
4C H A P T E R

Threads

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Many modern operating
systems now provide features for a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems and covers how to use Java to create and manipulate threads.
We have found it especially useful to discuss how a Java thread maps to the
thread model of the host operating system.

Exercises

4.7 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution
Answer: (1) Any kind of sequential program is not a good candidate
to be threaded. An example of this is a program that calculates an in-
dividual tax return. (2) Another example is a “shell” program such as
the C-shell or Korn shell. Such a program must closely monitor its own
working space such as open files, environment variables, and current
working directory.

4.8 Describe the actions taken by a thread library to context switch between
user-level threads.
Answer: Context switching between user threads is quite similar to
switching between kernel threads, although it is dependent on the
threads library and how it maps user threads to kernel threads. In
general, context switching between user threads involves taking a user
thread of its LWP and replacing it with another thread. This act typically
involves saving and restoring the state of the registers.

4.9 Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?
Answer: When a kernel thread suffers a page fault, another kernel
thread can be switched in to use the interleaving time in a useful manner.
A single-threaded process, on the other hand, will not be capable of

17

18 Chapter 4 Threads

performing useful work when a page fault takes place. Therefore, in
scenarios where a program might suffer from frequent page faults or
has to wait for other system events, a multithreaded solution would
perform better even on a single-processor system.

4.10 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

Answer: The threads of a multithreaded process share heap memory
and global variables. Each thread has its separate set of register values
and a separate stack.

4.11 Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-processor
system?
Answer: A multithreaded system comprising of multiple user-level
threads cannot make use of the different processors in a multiprocessor
system simultaneously. The operating system sees only a single process
and will not schedule the different threads of the process on separate
processors. Consequently, there is no performance benefit associated
with executing multiple user-level threads on a multiprocessor system.

4.12 As described in Section 4.5.2, Linux does not distinguish between pro-
cesses and threads. Instead, Linux treats both in the same way, allowing
a task to be more akin to a process or a thread depending on the set of
flags passed to the clone() system call. However, many operating sys-
tems—such as Windows XP and Solaris—treat processes and threads
differently. Typically, such systems use a notation wherein the data struc-
ture for a process contains pointers to the separate threads belonging to
the process. Contrast these two approaches for modeling processes and
threads within the kernel.
Answer: On one hand, in systems where processes and threads are
considered as similar entities, some of the operating system code could
be simplified. A scheduler, for instance, can consider the different pro-
cesses and threads on an equal footing without requiring special code to
examine the threads associated with a process during every scheduling
step. On the other hand, this uniformity could make it harder to impose
process-wide resource constraints in a direct manner. Instead, some ex-
tra complexity is required to identify which threads correspond to which
process and perform the relevant accounting tasks.

4.13 The program shown in Figure 4.14 uses the Pthreads API. What would
be output from the program at LINE C and LINE P?
Answer: Output at LINE C is 5. Output at LINE P is 0.

4.14 Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level

Exercises 19

threads in the program be greater than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal to
the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of user-
level threads.

Answer: When the number of kernel threads is less than the number
of processors, then some of the processors would remain idle since the
scheduler maps only kernel threads to processors and not user-level
threads to processors. When the number of kernel threads is exactly
equal to the number of processors, then it is possible that all of the
processors might be utilized simultaneously. However, when a kernel-
thread blocks inside the kernel (due to a page fault or while invoking
system calls), the corresponding processor would remain idle. When
there are more kernel threads than processors, a blocked kernel thread
could be swapped out in favor of another kernel thread that is ready to
execute, thereby increasing the utilization of the multiprocessor system.

4.15 Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.
Answer: Please refer to the supporting Web site for source code solution.

4.16 Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.
Answer: Please refer to the supporting Web site for source code solution.

4.17 The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8, For-
mally, it can be expressed as:

f ib0 = 0
f ib1 = 1
f ibn = f ibn−1 + f ibn−2

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should
work as follows: The user will enter on the command line the number
of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by the
child thread. Because the parent thread cannot begin outputting the Fi-
bonacci sequence until the child thread finishes, this will require having

20 Chapter 4 Threads

the parent thread wait for the child thread to finish using the techniques
described in Section 4.3.
Answer: Please refer to the supporting Web site for source code solution.

4.18 Exercise 3.18 in Chapter 3 specifies designing an echo server using the
Java threading API. However, this server is single-threaded, meaning the
server cannot respond to concurrent echo clients until the current client
exits. Modify the solution to Exercise 3.18 so that the echo server services
each client in a separate request
Answer: Please refer to the supporting Web site for source code solution.

4.19 A naming service such as DNS (for domain name system) can be used
to resolve IP names to IP addresses. For example, when someone ac-
cesses the host www.westminstercollege.edu , a naming service
is used to determine the IP address that is mapped to the IP name
www.westminstercollege.edu . This assignment consists of writ-
ing a multithreaded naming service in Java using sockets (see Section
3.6.1.)

The java.net API provides the following mechanism for resolving IP

names:

InetAddress hostAddress =
InetAddress.getByName("www.westminstercollege.edu") ;

String IPaddress = hostAddress.getHostAddress();

where getByName() throws an UnknownHostException if it is un-
able to resolve the host name.

The Server

The server will listen to port 6052 waiting for client connections. When a
client connection is made, the server will service the connection in a sep-
arate thread and will resume listening for additional client connections.
Once a client makes a connection to the server, the client will write the IP

name it wishes the server to resolve—such as www.westminstercollege.edu
—to the socket. The server thread will read this IP name from the socket
and either resolve its IP address or, if it cannot locate the host address,
catch an UnknownHostException . The server will write the IP ad-
dress back to the client or, in the case of an UnknownHostException ,
will write the message “Unable to resolve host <host name> .”
Once the server has written to the client, it will close its socket connec-
tion.

The Client

Initially, write just the server application and connect to it via telnet.
For example, assuming the server is running on the localhost, a telnet
session would appear as follows. (Client responses appear in blue.)

Exercises 21

telnet localhost 6052
Connected to localhost.
Escape character is ’ˆ]’.
www.westminstercollege.edu
146.86.1.17
Connection closed by foreign host.

By initially having telnet act as a client, you can more accurately debug
any problems you may have with your server. Once you are convinced
your server is working properly, you can write a client application. The
client will be passed the IP name that is to be resolved as a parameter.
The client will open a socket connection to the server and then write the
IP name that is to be resolved. It will then read the response sent back by
the server. As an example, if the client is named NSClient , it is invoked
as follows:

java NSClient www.westminstercollege.edu

and the server will respond with the corresponding IP address or “un-
known host” message. Once the client has output the IP address, it will
close its socket connection.
Answer: NO ANSWER

