
2C H A P T E ROperating-
System
Structures

Chapter 2 is concerned with the operating-system interfaces that users (or
at least programmers) actually see: system calls. The treatment is somewhat
vague since more detail requires picking a specific system to discuss. This
chapter is best supplemented with exactly this detail for the specific system the
students have at hand. Ideally they should study the system calls and write
some programs making system calls. This chapter also ties together several
important concepts including layered design, virtual machines, Java and the
Java virtual machine, system design and implementation, system generation,
and the policy/mechanism difference.

Exercises

2.12 The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.
Answer: One class of services provided by an operating system is to
enforce protection between different processes running concurrently in
the system. Processes are allowed to access only those memory locations
that are associated with their address spaces. Also, processes are not
allowed to corrupt files associated with other users. A process is also not
allowed to access devices directly without operating system interven-
tion. The second class of services provided by an operating system is to
provide new functionality that is not supported directly by the underly-
ing hardware. Virtual memory and file systems are two such examples
of new services provided by an operating system.

2.13 Describe three general methods for passing parameters to the operating
system.
Answer:

a. Pass parameters in registers

b. Registers pass starting addresses of blocks of parameters

9



10 Chapter 2 Operating-System Structures

c. Parameters can be placed, or pushed, onto the stack by the program,
and popped off the stack by the operating system

2.14 Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.
Answer: One could issue periodic timer interrupts and monitor what
instructions or what sections of code are currently executing when the
interrupts are delivered. A statistical profile of which pieces of code
were active should be consistent with the time spent by the program
in different sections of its code. Once such a statistical profile has been
obtained, the programmer could optimize those sections of code that are
consuming more of the CPU resources.

2.15 What are the five major activities of an operating system in regard to file
management?
Answer:

• The creation and deletion of files

• The creation and deletion of directories

• The support of primitives for manipulating files and directories

• The mapping of files onto secondary storage

• The backup of files on stable (nonvolatile) storage media

2.16 What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?
Answer: Each device can be accessed as though it was a file in the
file system. Since most of the kernel deals with devices through this file
interface, it is relatively easy to add a new device driver by implement-
ing the hardware-specific code to support this abstract file interface.
Therefore, this benefits the development of both user program code,
which can be written to access devices and files in the same manner,
and device-driver code, which can be written to support a well-defined
API. The disadvantage with using the same interface is that it might be
difficult to capture the functionality of certain devices within the context
of the file access API, thereby resulting in either a loss of functionality or
a loss of performance. Some of this could be overcome by the use of the
ioctl operation that provides a general-purpose interface for processes
to invoke operations on devices.

2.17 Would it be possible for the user to develop a new command interpreter
using the system-call interface provided by the operating system?
Answer: An user should be able to develop a new command interpreter
using the system-call interface provided by the operating system. The
command interpreter allows an user to create and manage processes
and also determine ways by which they communicate (such as through
pipes and files). As all of this functionality could be accessed by an user-
level program using the system calls, it should be possible for the user
to develop a new command-line interpreter.



Exercises 11

2.18 What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?
Answer: TBA

2.19 Why is the separation of mechanism and policy desirable?
Answer: Mechanism and policy must be separate to ensure that systems
are easy to modify. No two system installations are the same, so each
installation may want to tune the operating system to suit its needs.
With mechanism and policy separate, the policy may be changed at will
while the mechanism stays unchanged. This arrangement provides a
more flexible system.

2.20 It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.
Answer: The virtual memory subsystem and the storage subsystem
are typically tightly coupled and requires careful design in a layered
system due to the following interactions. Many systems allow files to
be mapped into the virtual memory space of an executing process. On
the other hand, the virtual memory subsystem typically uses the storage
system to provide the backing store for pages that do not currently re-
side in memory. Also, updates to the file system are sometimes buffered
in physical memory before it is flushed to disk, thereby requiring care-
ful coordination of the usage of memory between the virtual memory
subsystem and the file system.

2.21 What is the main advantage of the microkernel approach to system de-
sign? How do user programs and system services interact in a microker-
nel architecture? What are the disadvantages of using the microkernel
approach?
Answer: Benefits typically include the following: (a) adding a new
service does not require modifying the kernel, (b) it is more secure as
more operations are done in user mode than in kernel mode, and (c) a
simpler kernel design and functionality typically results in a more reli-
able operating system. User programs and system services interact in a
microkernel architecture by using interprocess communication mecha-
nisms such as messaging. These messages are conveyed by the operating
system. The primary disadvantages of the microkernel architecture are
the overheads associated with interprocess communication and the fre-
quent use of the operating system’s messaging functions in order to
enable the user process and the system service to interact with each
other.

2.22 In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?
Answer: The modular kernel approach requires subsystems to interact
with each other through carefully constructed interfaces that are typi-
cally narrow (in terms of the functionality that is exposed to external
modules). The layered kernel approach is similar in that respect. How-
ever, the layered kernel imposes a strict ordering of subsystems such
that subsystems at the lower layers are not allowed to invoke opera-



12 Chapter 2 Operating-System Structures

tions corresponding to the upper-layer subsystems. There are no such
restrictions in the modular-kernel approach, wherein modules are free
to invoke each other without any constraints.

2.23 What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?
Answer: The system is easy to debug, and security problems are easy
to solve. Virtual machines also provide a good platform for operating
system research since many different operating systems can run on one
physical system.

2.24 Why is a just-in-time compiler useful for executing Java programs?
Answer: Java is an interpreted language. This means that the JVM inter-
prets the bytecode instructions one at a time. Typically, most interpreted
environments are slower than running native binaries, for the interpre-
tation process requires converting each instruction into native machine
code. A just-in-time (JIT) compiler compiles the bytecode for a method
into native machine code the first time the method is encountered. This
means that the Java program is essentially running as a native appli-
cation (of course, the conversion process of the JIT takes time as well,
but not as much as bytecode interpretation). Furthermore, the JIT caches
compiled code so that it can be reused the next time the method is en-
countered. A Java program that is run by a JIT rather than a traditional
interpreter typically runs much faster.

2.25 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?
Answer: A guest operating system provides its services by mapping
them onto the functionality provided by the host operating system. A
key issue that needs to be considered in choosing the host operating
system is whether it is sufficiently general in terms of its system-call
interface in order to be able to support the functionality associated with
the guest operating system.

2.26 The experimental Synthesis operating system has an assembler incorpo-
rated within the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the sys-
tem call must take through the kernel. This approach is the antithesis of
the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and to system-performance
optimization.
Answer: Synthesis is impressive due to the performance it achieves
through on-the-fly compilation. Unfortunately, it is difficult to debug
problems within the kernel due to the fluidity of the code. Also, such
compilation is system specific, making Synthesis difficult to port (a new
compiler must be written for each architecture).




