
10C H A P T E R

File-System
Interface

Files are the most obvious object that operating systems manipulate. Every-
thing is typically stored in files: programs, data, output, etc. The student should
learn what a file is to the operating system and what the problems are (provid-
ing naming conventions to allow files to be found by user programs, protec-
tion).

Two problems can crop up in this chapter. First, terminology may be dif-
ferent between your system and the book. This can be used to drive home
the point that concepts are important and terms must be clearly defined when
you get to a new system. Second, it may be difficult to motivate students to
learn about directory structures that are not the ones on the system they are
using. This can best be overcome if the students have two very different sys-
tems to consider, such as a single-user system for a microcomputer and a large,
university time-shared system.

Projects might include a report about the details of the file system for the
local system. It is also possible to write programs to implement a simple file
system either in memory (allocate a large block of memory that is used to
simulate a disk) or on top of an existing file system. In many cases, the design
of a file system is an interesting project of its own.

Exercises

10.10 Consider a file system where a file can be deleted and its disk space
reclaimed while links to that file still exist. What problems may occur if
a new file is created in the same storage area or with the same absolute
path name? How can these problems be avoided?
Answer: Let F1 be the old file and F2 be the new file. A user wishing
to access F1 through an existing link will actually access F2. Note that
the access protection for file F1 is used rather than the one associated
with F2.

This problem can be avoided by insuring that all links to a deleted
file are deleted also. This can be accomplished in several ways:

a. maintain a list of all links to a file, removing each of them when
the file is deleted

69



70 Chapter 10 File-System Interface

b. retain the links, removing them when an attempt is made to access
a deleted file

c. maintain a file reference list (or counter), deleting the file only
after all links or references to that file have been deleted

10.11 The open-file table is used to maintain information about files that are
currently open. Should the operating system maintain a separate table
for each user or just maintain one table that contains references to files
that are being accessed by all users at the current time? If the same file
is being accessed by two different programs or users, should there be
separate entries in the open file table?
Answer: By keeping a central open-file table, the operating system
can perform the following operation that would be infeasible otherwise.
Consider a file that is currently being accessed by one or more processes.
If the file is deleted, then it should not be removed from the disk until all
processes accessing the file have closed it. This check can be performed
only if there is centralized accounting of number of processes accessing
the file. On the other hand, if two processes are accessing the file,
then two separate states need to be maintained to keep track of the
current location of which parts of the file are being accessed by the
two processes. This requires the operating system to maintain separate
entries for the two processes.

10.12 What are the advantages and disadvantages of a system providing
mandatory locks instead of providing advisory locks whose usage is
left to the users’ discretion?
Answer: In many cases, separate programs might be willing to tolerate
concurrent access to a file without requiring the need to obtain locks and
thereby guaranteeing mutual exclusion to the files. Mutual exclusion
could be guaranteed by other program structures such as memory locks
or other forms of synchronization. In such situations, the mandatory
locks would limit the flexibility in how files could be accessed and
might also increase the overheads associated with accessing files.

10.13 What are the advantages and disadvantages of recording the name
of the creating program with the file’s attributes (as is done in the
Macintosh Operating System)?
Answer: By recording the name of the creating program, the operat-
ing system is able to implement features (such as automatic program
invocation when the file is accessed) based on this information. It does
add overhead in the operating system and require space in the file
descriptor, however.

10.14 Some systems automatically open a file when it is referenced for the first
time, and close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme as compared to the more traditional
one, where the user has to open and close the file explicitly.
Answer: Automatic opening and closing of files relieves the user from
the invocation of these functions, and thus makes it more convenient
to the user; however, it requires more overhead than the case where
explicit opening and closing is required.



Exercises 71

10.15 If the operating system were to know that a certain application is going
to access the file data in a sequential manner, how could it exploit this
information to improve performance?
Answer: When a block is accessed, the file system could prefetch the
subsequent blocks in anticipation of future requests to these blocks. This
prefetching optimization would reduce the waiting time experienced
by the process for future requests.

10.16 Give an example of an application that could benefit from operating
system support for random access to indexed files.
Answer: An application that maintains a database of entries could
benefit from such support. For instance, if a program is maintaining
a student database, then accesses to the database cannot be modeled
by any predetermined access pattern. The access to records are random
and locating the records would be more efficient if the operating system
were to provide some form of tree-based index.

10.17 Discuss the merits and demerits of supporting links to files that cross
mount points (that is, the file link refers to a file that is stored in a
different volume).
Answer: The advantage is that there is greater transparency in the
sense that the user does not need to be aware of mount points and
create links in all scenarios. The disadvantage however is that the file
system containing the link might be mounted while the file system
containing the target file might not be, and therefore one cannot provide
transparent access to the file in such a scenario; the error condition
would expose to the user that a link is a dead link and that the link
does indeed cross file system boundaries.

10.18 Some systems provide file sharing by maintaining a single copy of a
file; other systems maintain several copies, one for each of the users
sharing the file. Discuss the relative merits of each approach.
Answer: With a single copy, several concurrent updates to a file may
result in user obtaining incorrect information, and the file being left in
an incorrect state. With multiple copies, there is storage waste and the
various copies may not be consistent with respect to each other.

10.19 Discuss the advantages and disadvantages of associating with remote
file systems (stored on file servers) a different set of failure semantics
from that associated with local file systems.
Answer: The advantage is that the application can deal with the failure
condition in a more intelligent manner if it realizes that it incurred an
error while accessing a file stored in a remote file system. For instance, a
file open operation could simply fail instead of hanging when accessing
a remote file on a failed server and the application could deal with the
failure in the best possible manner; if the operation were simply to
hang, then the entire application hangs, which is not desirable. The
disadvantage however is the lack of uniformity in failure semantics
and the resulting complexity in application code.

10.20 What are the implications of supporting UNIX consistency semantics
for shared access for those files that are stored on remote file systems?



72 Chapter 10 File-System Interface

Answer: UNIX consistency semantics requires updates to a file to be
immediately available to other processes. Supporting such a semantics
for shared files on remote file systems could result in the following
inefficiencies: all updates by a client have to be immediately reported
to the file server instead of being batched (or even ignored if the updates
are to a temporary file), and updates have to be communicated by the
file server to clients caching the data immediately, again resulting in
more communication.




