
7C H A P T E R

Deadlocks

Deadlock is a problem that can arise only in a system with multiple active
asynchronous processes. It is important that the students learn the three basic
approaches to deadlock: prevention, avoidance, and detection (although the
terms prevention and avoidance are easy to confuse).

It can be useful to pose a deadlock problem in human terms and ask why
human systems never deadlock. Can the students transfer this understanding
of human systems to computer systems?

Projects can involve simulation: create a list of jobs consisting of requests
and releases of resources (single type or multiple types). Ask the students to al-
locate the resources to prevent deadlock. This basically involves programming
the Banker’s Algorithm.

The survey paper by Coffman, Elphick, and Shoshani [1971] is good sup-
plemental reading, but you might also consider having the students go back to
the papers by Havender [1968], Habermann [1969], and Holt [1971a]. The last
two were published in CACM and so should be readily available.

Exercises

7.10 Consider the traffic deadlock depicted in Figure 7.9.

a. Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simple rule for avoiding deadlocks in this system.

Answer:

a. The four necessary conditions for a deadlock are (1) mutual exclu-
sion; (2) hold-and-wait; (3) no preemption; and (4) circular wait.
The mutual exclusion condition holds since only one car can oc-
cupy a space in the roadway. Hold-and-wait occurs where a car
holds onto its place in the roadway while it waits to advance in
the roadway. A car cannot be removed (i.e. preempted) from its
position in the roadway. Lastly, there is indeed a circular wait as

43

44 Chapter 7 Deadlocks

each car is waiting for a subsequent car to advance. The circular
wait condition is also easily observed from the graphic.

b. A simple rule that would avoid this traffic deadlock is that a car
may not advance into an intersection if it is clear it will not be able
immediately to clear the intersection.

7.11 Consider the deadlock situation that could occur in the dining-
philosophers problem when the philosophers obtain the chopsticks one
at a time. Discuss how the four necessary conditions for deadlock in-
deed hold in this setting. Discuss how deadlocks could be avoided by
eliminating any one of the four conditions.
Answer: Deadlock is possible because the four necessary conditions
hold in the following manner: 1) mutual exclusion is required for chop-
sticks, 2) the philosophers hold onto the chopstick in hand while they
wait for the other chopstick, 3) there is no preemption of chopsticks in
the sense that a chopstick allocated to a philosopher cannot be forcibly
taken away, and 4) there is a possibility of circular wait. Deadlocks could
be avoided by overcoming the conditions in the following manner: 1)
allow simultaneous sharing of chopsticks, 2) have the philosophers relin-
quish the first chopstick if they are unable to obtain the other chopstick,
3) allow chopsticks to be forcibly taken away if a philosopher has had
a chopstick for a long period of time, and 4) enforce a numbering of
the chopsticks and always obtain the lower numbered chopstick before
obtaining the higher numbered one.

7.12 In Section 7.4.4 we describe a situation where deadlock is prevented by
ensuring locks are all acquired in a certain order. However, the trans-
action() function in this Section illustrates a scenario where this may
not always work. Fix the transaction() function to prevent deadlocks.
Answer: Add a new lock to this function. This third lock must be
acquired before the two locks associated with the accounts are acquired.
The transaction() function now appears as follows:

void transaction(Account from, Account to, double amount)
{

Semaphore lock1, lock2, lock3;
wait(lock3);
lock1 = getLock(from);
lock2 = getLock(to);

wait(lock1);
wait(lock2);

withdraw(from, amount);
deposit(to, amount);

signal(lock3);
signal(lock2);

signal(lock1);
}

Exercises 45

7.13 Compare the circular-wait scheme with the deadlock-avoidance schemes
(like the banker’s algorithm) with respect to the following issues:

a. Runtime overheads

b. System throughput

Answer: A deadlock-avoidance scheme tends to increase the runtime
overheads due to the cost of keep track of the current resource allocation.
However, a deadlock-avoidance scheme allows for more concurrent use
of resources than schemes that statically prevent the formation of dead-
lock. In that sense, a deadlock-avoidance scheme could increase system
throughput.

7.14 In a real computer system, neither the resources available nor the de-
mands of processes for resources are consistent over long periods (months).
Resources break or are replaced, new processes come and go, new re-
sources are bought and added to the system. If deadlock is controlled
by the banker’s algorithm, which of the following changes can be made
safely (without introducing the possibility of deadlock), and under what
circumstances?

a. Increase Available (new resources added)

b. Decrease Available (resource permanently removed from system)

c. Increase Max for one process (the process needs more resources
than allowed, it may want more)

d. Decrease Max for one process (the process decides it does not need
that many resources)

e. Increase the number of processes

f. Decrease the number of processes

Answer:

a. Increase Available (new resources added)—This could safely be
changed without any problems.

b. Decrease Available (resource permanently removed from system)
—This could have an effect on the system and introduce the pos-
sibility of deadlock as the safety of the system assumed there were
a certain number of available resources.

c. Increase Max for one process (the process needs more resources
than allowed, it may want more)—This could have an effect on
the system and introduce the possibility of deadlock.

d. Decrease Max for one process (the process decides it does not need
that many resources)—This could safely be changed without any
problems.

e. Increase the number of processes—This could be allowed assum-
ing that resources were allocated to the new process(es) such that
the system does not enter an unsafe state.

46 Chapter 7 Deadlocks

f. Decrease the number of processes—This could safely be changed
without any problems.

7.15 Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock-free.
Answer: Suppose the system is deadlocked. This implies that each
process is holding one resource and is waiting for one more. Since there
are three processes and four resources, one process must be able to obtain
two resources. This process requires no more resources and, therefore it
will return its resources when done.

7.16 Consider a system consisting of m resources of the same type, being
shared by n processes. Resources can be requested and released by pro-
cesses only one at a time. Show that the system is deadlock free if the
following two conditions hold:

a. The maximum need of each process is between 1 and m resources

b. The sum of all maximum needs is less than m + n

Answer: Using the terminology of Section 7.6.2, we have:

a.
∑n

i = 1 Maxi < m + n

b. Maxi ≥ 1 for all i
Proof: Needi = Maxi − Allocationi

If there exists a deadlock state then:

c.
∑n

i = 1 Allocationi = m

Use a. to get:
∑

Needi +
∑

Allocationi =
∑

Maxi < m + n
Use c. to get:

∑

Needi + m < m + n
Rewrite to get:

∑n
i = 1 Needi < n

This implies that there exists a process Pi such that Needi = 0. Since
Maxi ≥ 1 it follows that Pi has at least one resource that it can release.
Hence the system cannot be in a deadlock state.

7.17 Consider the dining-philosophers problem where the chopsticks are
placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests for chopsticks are made one
at a time. Describe a simple rule for determining whether a particular
request could be satisfied without causing deadlock given the current
allocation of chopsticks to philosophers.
Answer: The following rule prevents deadlock: when a philosopher
makes a request for the first chopstick, do not grant the request if there
is no other philosopher with two chopsticks and if there is only one
chopstick remaining.

7.18 Consider the same setting as the previous problem. Assume now that
each philosopher requires three chopsticks to eat and that resource re-
quests are still issued separately. Describe some simple rules for deter-
mining whether a particular request could be satisfied without causing
deadlock given the current allocation of chopsticks to philosophers.

Exercises 47

Answer: When a philosopher makes a request for a chopstick, allocate
the request if: 1) the philosopher has two chopsticks and there is at least
one chopstick remaining, 2) the philosopher has one chopstick and there
are at least two chopsticks remaining, 3) there is at least one chopstick
remaining, and there is at least one philosopher with three chopsticks, 4)
the philosopher has no chopsticks, there are two chopsticks remaining,
and there is at least one other philosopher with two chopsticks assigned.

7.19 We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the multiple-
resource-type banker’s scheme cannot be implemented by individual
application of the single-resource-type scheme to each resource type.
Answer: Consider a system with resources A, B, and C and processes
P0, P1, P2, P3, and P4 with the following values of Allocation:

Allocation

A B C
P0 0 1 0
P1 3 0 2
P2 3 0 2
P3 2 1 1
P4 0 0 2

and the following value of Need:

Need

A B C
P0 7 4 3
P1 0 2 0
P2 6 0 0
P3 0 1 1
P4 4 3 1

If the value of Available is (2 3 0), we can see that a request from process
P0 for (0 2 0) cannot be satisfied as this lowers Available to (2 1 0) and no
process could safely finish.

However, if we treat the three resources as three single-resource types
of the banker’s algorithm, we get the following:
For resource A (of which we have 2 available),

Allocated Need
P0 0 7
P1 3 0
P2 3 6
P3 2 0
P4 0 4

Processes could safely finish in the order P1, P3, P4, P2, P0.

48 Chapter 7 Deadlocks

For resource B (of which we now have 1 available as 2 were assumed
assigned to process P0),

Allocated Need
P0 3 2
P1 0 2
P2 0 0
P3 1 1
P4 0 3

Processes could safely finish in the order P2, P3, P1, P0, P4.
And finally, for For resource C (of which we have 0 available),

Allocated Need
P0 0 3
P1 2 0
P2 2 0
P3 1 1
P4 2 1

Processes could safely finish in the order P1, P2, P0, P3, P4.
As we can see, if we use the banker’s algorithm for multiple resource

types, the request for resources (0 2 0) from process P0 is denied as it
leaves the system in an unsafe state. However, if we consider the banker’s
algorithm for the three separate resources where we use a single resource
type, the request is granted. Therefore, if we have multiple resource
types, we must use the banker’s algorithm for multiple resource types.

7.20 Consider the following snapshot of a system:

Allocation Max Available

A B C D A B C D A B C D
P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request be
granted immediately?

Answer:
a. What is the content of the matrix Need? The values of Need for

processes P0 through P4 respectively are (0, 0, 0, 0), (0, 7, 5, 0), (1,
0, 0, 2), (0, 0, 2, 0), and (0, 6, 4, 2).

Exercises 49

b. Is the system in a safe state? Yes. With Available being equal to (1,
5, 2, 0), either process P0 or P3 could run. Once process P3 runs, it
releases its resources, which allow all other existing processes to
run.

c. If a request from process P1 arrives for (0,4,2,0), can the request
be granted immediately? Yes, it can. This results in the value of
Available being (1, 1, 0, 0). One ordering of processes that can finish
is P0, P2, P3, P1, and P4.

7.21 What is the optimistic assumption made in the deadlock-detection algo-
rithm? How could this assumption be violated?
Answer: The optimistic assumption is that there will not be any form
of circular wait in terms of resources allocated and processes making
requests for them. This assumption could be violated if a circular wait
does indeed occur in practice.

7.22 A single-lane bridge connects the two Vermont villages of North Tun-
bridge and South Tunbridge. Farmers in the two villages use this bridge
to deliver their produce to the neighboring town. The bridge can be-
come deadlocked if both a northbound and a southbound farmer get on
the bridge at the same time (Vermont farmers are stubborn and are un-
able to back up). Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, and vice versa).
Answer:

semaphore ok to cross = 1;

void enter bridge() {
ok to cross.wait();

}

void exit bridge() {
ok to cross.signal();

}

50 Chapter 7 Deadlocks

7.23 Modify your solution to Exercise 7.22 so that it is starvation-free.
Answer:

monitor bridge {
int num waiting north = 0;
int num waiting south = 0;
int on bridge = 0;
condition ok to cross;
int prev = 0;

void enter bridge north() {
num waiting north++;
while (on bridge ||

(prev == 0 && num waiting south > 0))
ok to cross.wait();
num waiting north--;
prev = 0;

}

void exit bridge north() {
on bridge = 0;
ok to cross.broadcast();

}

void enter bridge south() {
num waiting south++;
while (on bridge ||

(prev == 1 && num waiting north > 0))
ok to cross.wait();
num waiting south--;
prev = 1;

}

void exit bridge south() {
on bridge = 0;
ok to cross.broadcast();

}
}

