
5C H A P T E R

CPU Scheduling

CPU scheduling is the basis of multiprogrammed operating systems. By switch-
ing the CPU among processes, the operating system can make the computer
more productive. In this chapter, we introduce the basic scheduling concepts
and discuss in great length CPU scheduling. FCFS, SJF, Round-Robin, Priority,
and the other scheduling algorithms should be familiar to the students. This
is their first exposure to the idea of resource allocation and scheduling, so it
is important that they understand how it is done. Gantt charts, simulations,
and play acting are valuable ways to get the ideas across. Show how the ideas
are used in other situations (like waiting in line at a post office, a waiter time
sharing between customers, even classes being an interleaved round-robin
scheduling of professors).

A simple project is to write several different CPU schedulers and compare
their performance by simulation. The source of CPU and I/O bursts may be
generated by random number generators or by a trace tape. The instructor can
make up the trace tape in advance to provide the same data for all students. The
file that I used was a set of jobs, each job being a variable number of alternating
CPU and I/O bursts. The first line of a job was the word JOB and the job number.
An alternating sequence of CPU n and I/O n lines followed, each specifying a
burst time. The job was terminated by an END line with the job number again.
Compare the time to process a set of jobs using FCFS, Shortest-Burst-Time, and
round-robin scheduling. Round-robin is more difficult, since it requires putting
unfinished requests back in the ready queue.

Exercises

5.9 Why is it important for the scheduler to distinguish I/O-bound programs
from CPU-bound programs?
Answer: I/O-bound programs have the property of performing only
a small amount of computation before performing I/O. Such programs
typically do not use up their entire CPU quantum. CPU-bound programs,
on the other hand, use their entire quantum without performing any
blocking I/O operations. Consequently, one could make better use of the

23



24 Chapter 5 CPU Scheduling

computer’s resouces by giving higher priority to I/O-bound programs
and allow them to execute ahead of the CPU-bound programs.

5.10 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time

b. Average turnaround time and maximum waiting time

c. I/O device utilization and CPU utilization

Answer:

a. CPU utilization and response time: CPU utilization is increased if
the overheads associated with context switching is minimized. The
context switching overheads could be lowered by performing con-
text switches infrequently. This could, however, result in increasing
the response time for processes.

b. Average turnaround time and maximum waiting time: Average
turnaround time is minimized by executing the shortest tasks
first. Such a scheduling policy could, however, starve long-running
tasks and thereby increase their waiting time.

c. I/O device utilization and CPU utilization: CPU utilization is max-
imized by running long-running CPU-bound tasks without per-
forming context switches. I/O device utilization is maximized by
scheduling I/O-bound jobs as soon as they become ready to run,
thereby incurring the overheads of context switches.

5.11 Consider the exponential average formula used to predict the length of
the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. a = 0 and t0 = 100 milliseconds

b. a = 0.99 and t0 = 10 milliseconds

Answer: When a = 0 and t0 = 100 milliseconds, the formula always
makes a prediction of 100 milliseconds for the next CPU burst. When
a = 0.99 and t0 = 10 milliseconds, the most recent behavior of the process
is given much higher weight than the past history associated with the
process. Consequently, the scheduling algorithm is almost memoryless,
and simply predicts the length of the previous burst for the next quantum
of CPU execution.

5.12 Consider the following set of processes, with the length of the CPU-burst
time given in milliseconds:

Process Burst Time Priority

P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2



Exercises 25

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5,
all at time 0.

a. Draw four Gantt charts illustrating the execution of these processes
using FCFS, SJF, a nonpreemptive priority (a smaller priority num-
ber implies a higher priority), and RR (quantum = 1) scheduling.

b. What is the turnaround time of each process for each of the schedul-
ing algorithms in part a?

c. What is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the schedules in part a results in the minimal average
waiting time (over all processes)?

Answer:

a. The four Gantt charts are

2 3 4 5 1 5 1 5 1 51 13 1 5

1 2 4 53

2 4 3 5 1

1 3 452

SJF

RR

FCFS

Priority

b. Turnaround time

FCFS RR SJF Priority
P1 10 19 19 16
P2 11 2 1 1
P3 13 7 4 18
P4 14 4 2 19
P5 19 14 9 6

c. Waiting time (turnaround time minus burst time)

FCFS RR SJF Priority
P1 0 9 9 6
P2 10 1 0 0
P3 11 5 2 16
P4 13 3 1 18
P5 14 9 4 1

d. Shortest Job First

5.13 Which of the following scheduling algorithms could result in starvation?



26 Chapter 5 CPU Scheduling

a. First-come, first-served

b. Shortest job first

c. Round robin

d. Priority

Answer: Shortest job first and priority-based scheduling algorithms
could result in starvation.

5.14 Consider a variant of the RR scheduling algorithm where the entries in
the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same
process in the ready queue?

b. What would be the major advantages and disadvantages of this
scheme?

c. How would you modify the basic RR algorithm to achieve the same
effect without the duplicate pointers?

Answer:

a. In effect, that process will have increased its priority since by get-
ting time more often it is receiving preferential treatment.

b. The advantage is that more important jobs could be given more
time, in other words, higher priority in treatment. The conse-
quence, of course, is that shorter jobs will suffer.

c. Allot a longer amount of time to processes deserving higher pri-
ority. In other words, have two or more quantums possible in the
Round-Robin scheme.

5.15 Consider a system running ten I/O-bound tasks and one CPU-bound
task. Assume that the I/O-bound tasks issue an I/O operation once for
every millisecond of CPU computing and that each I/O operation takes
10 milliseconds to complete. Also assume that the context switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

Answer:

a. The time quantum is 1 millisecond: Irrespective of which process is
scheduled, the scheduler incurs a 0.1 millisecond context-switching
cost for every context-switch. This results in a CPU utilization of
1/1.1 * 100 = 91%.

b. The time quantum is 10 milliseconds: The I/O-bound tasks incur
a context switch after using up only 1 millisecond of the time
quantum. The time required to cycle through all the processes
is therefore 10*1.1 + 10.1 (as each I/O-bound task executes for 1
millisecond and then incur the context switch task, whereas the



Exercises 27

CPU-bound task executes for 10 milliseconds before incurring a
context switch). The CPU utilization is therefore 20/21.1 * 100 =
94%.

5.16 Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU

time allocated to the user’s process?
Answer: The program could maximize the CPU time allocated to it
by not fully utilizing its time quantums. It could use a large fraction
of its assigned quantum, but relinquish the CPU before the end of the
quantum, thereby increasing the priority associated with the process.

5.17 Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not run-
ning), its priority changes at a rate a; when it is running, its priority
changes at a rate b. All processes are given a priority of 0 when they
enter the ready queue. The parameters a and b can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from b > a > 0?

b. What is the algorithm that results from a < b < 0?

Answer:

a. FCFS

b. LIFO

5.18 Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

Answer:

a. FCFS—discriminates against short jobs since any short jobs arriving
after long jobs will have a longer waiting time.

b. RR—treats all jobs equally (giving them equal bursts of CPU time)
so short jobs will be able to leave the system faster since they will
finish first.

c. Multilevel feedback queues work similar to the RR algorithm—
they discriminate favorably toward short jobs.

5.19 Using the Windows XP scheduling algorithm, what is the numeric pri-
ority of a thread for the following scenarios?

a. A thread in the REALTIME PRIORITY CLASS with a relative priority
of HIGHEST.

b. A thread in the NORMAL PRIORITY CLASS with a relative priority
of NORMAL.



28 Chapter 5 CPU Scheduling

c. A thread in the HIGH PRIORITY CLASS with a relative priority of
ABOVE NORMAL.

Answer:

a. 26

b. 8

c. 14

5.20 Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads:

a. What is the time quantum (in milliseconds) for a thread with pri-
ority 10? With priority 55?

b. Assume a thread with priority 35 has used its entire time quantum
without blocking. What new priority will the scheduler assign this
thread?

c. Assume a thread with priority 35 blocks for I/O before its time
quantum has expired. What new priority will the scheduler assign
this thread?

Answer:

a. 160 and 40

b. 35

c. 54

5.21 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (Recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, process P2 is 18,
and process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
Answer: The priorities assigned to the processes are 80, 69, and 65
respectively. The scheduler lowers the relative priority of CPU-bound
processes.




