
1C H A P T E R

Introduction

Practice Exercises

1.1 The three main puropses are:

• To provide an environment for a computer user to execute programs
on computer hardware in a convenient and efficient manner.

• To allocate the separate resources of the computer as needed to
solve the problem given. The allocation process should be as fair
and efficient as possible.

• As a control program it serves two major functions: (1) supervision
of the execution of user programs to prevent errors and improper use
of the computer, and (2) management of the operation and control
of I/O devices.

1.2 Generally, operating systems for batch systems have simpler require-
ments than for personal computers. Batch systems do not have to be
concerned with interacting with a user as much as a personal computer.
As a result, an operating system for a PC must be concerned with re-
sponse time for an interactive user. Batch systems do not have such
requirements. A pure batch system also may have not to handle time
sharing, whereas an operating system must switch rapidly between dif-
ferent jobs.

1.3 The four steps are:

a. Reserve machine time.

b. Manually load program into memory.

c. Load starting address and begin execution.

d. Monitor and control execution of program from console.

1.4 Single-user systems should maximize use of the system for the user. A
GUI might “waste” CPU cycles, but it optimizes the user’s interaction
with the system.

1



2 Chapter 1 Introduction

1.5 The main difficulty is keeping the operating system within the fixed time
constraints of a real-time system. If the system does not complete a task
in a certain time frame, it may cause a breakdown of the entire system it
is running. Therefore when writing an operating system for a real-time
system, the writer must be sure that his scheduling schemes don’t allow
response time to exceed the time constraint.

1.6 Point. Applications such as web browsers and email tools are performing
an increasingly important role in modern desktop computer systems. To
fulfill this role, they should be incorporated as part of the operating
system. By doing so, they can provide better performance and better
integration with the rest of the system. In addition, these important
applications can have the same look-and-feel as the operating system
software.
Counterpoint. The fundamental role of the operating system is to man-
age system resources such as the CPU, memory, I/O devices, etc. In ad-
dition, it’s role is to run software applications such as web browsers and
email applications. By incorporating such applications into the operating
system, we burden the operating system with additional functionality.
Such a burden may result in the operating system performing a less-than-
satisfactory job at managing system resources. In addition, we increase
the size of the operating system thereby increasing the likelihood of
system crashes and security violations.

1.7 The distinction between kernel mode and user mode provides a rudi-
mentary form of protection in the following manner. Certain instructions
could be executed only when the CPU is in kernel mode. Similarly, hard-
ware devices could be accessed only when the program is executing in
kernel mode. Control over when interrupts could be enabled or disabled
is also possible only when the CPU is in kernel mode. Consequently, the
CPU has very limited capability when executing in user mode, thereby
enforcing protection of critical resources.

1.8 The following operations need to be privileged: Set value of timer, clear
memory, turn off interrupts, modify entries in device-status table, access
I/O device. The rest can be performed in user mode.

1.9 The data required by the operating system (passwords, access controls,
accounting information, and so on) would have to be stored in or passed
through unprotected memory and thus be accessible to unauthorized
users.

1.10 Although most systems only distinguish between user and kernel modes,
some CPUs have supported multiple modes. Multiple modes could be
used to provide a finer-grained security policy. For example, rather than
distinguishing between just user and kernel mode, you could distin-
guish between different types of user mode. Perhaps users belonging to
the same group could execute each other’s code. The machine would go
into a specified mode when one of these users was running code. When
the machine was in this mode, a member of the group could run code
belonging to anyone else in the group.



Practice Exercises 3

Another possibility would be to provide different distinctions within
kernel code. For example, a specific mode could allow USB device drivers
to run. This would mean that USB devices could be serviced without
having to switch to kernel mode, thereby essentially allowing USB device
drivers to run in a quasi-user/kernel mode.

1.11 A program could use the following approach to compute the current
time using timer interrupts. The program could set a timer for some
time in the future and go to sleep. When it is awakened by the interrupt,
it could update its local state, which it is using to keep track of the
number of interrupts it has received thus far. It could then repeat this
process of continually setting timer interrupts and updating its local
state when the interrupts are actually raised.

1.12 The Internet is a WAN as the various computers are located at geograph-
ically different places and are connected by long-distance network links.





2C H A P T E ROperating-
System
Structures

Practice Exercises

2.1 System calls allow user-level processes to request services of the operat-
ing system.

2.2 The five major activities are:

a. The creation and deletion of both user and system processes

b. The suspension and resumption of processes

c. The provision of mechanisms for process synchronization

d. The provision of mechanisms for process communication

e. The provision of mechanisms for deadlock handling

2.3 The three major activities are:

a. Keep track of which parts of memory are currently being used and
by whom.

b. Decide which processes are to be loaded into memory when mem-
ory space becomes available.

c. Allocate and deallocate memory space as needed.

2.4 The three major activities are:

• Free-space management.

• Storage allocation.

• Disk scheduling.

2.5 It reads commands from the user or from a file of commands and executes
them, usually by turning them into one or more system calls. It is usually
not part of the kernel since the command interpreter is subject to changes.

2.6 In Unix systems, a fork system call followed by an exec system call need
to be performed to start a new process. The fork call clones the currently

5



6 Chapter 2 Operating-System Structures

executing process, while the exec call overlays a new process based on a
different executable over the calling process.

2.7 System programs can be thought of as bundles of useful system calls.
They provide basic functionality to users so that users do not need to
write their own programs to solve common problems.

2.8 As in all cases of modular design, designing an operating system in
a modular way has several advantages. The system is easier to debug
and modify because changes affect only limited sections of the system
rather than touching all sections of the operating system. Information
is kept only where it is needed and is accessible only within a defined
and restricted area, so any bugs affecting that data must be limited to a
specific module or layer.

2.9 The five services are:

a. Program execution. The operating system loads the contents (or
sections) of a file into memory and begins its execution. A user-
level program could not be trusted to properly allocate CPU time.

b. I/O operations. Disks, tapes, serial lines, and other devices must be
communicated with at a very low level. The user need only specify
the device and the operation to perform on it, while the system
converts that request into device- or controller-specific commands.
User-level programs cannot be trusted to access only devices they
should have access to and to access them only when they are oth-
erwise unused.

c. File-system manipulation. There are many details in file creation,
deletion, allocation, and naming that users should not have to per-
form. Blocks of disk space are used by files and must be tracked.
Deleting a file requires removing the name file information and
freeing the allocated blocks. Protections must also be checked to
assure proper file access. User programs could neither ensure ad-
herence to protection methods nor be trusted to allocate only free
blocks and deallocate blocks on file deletion.

d. Communications. Message passing between systems requires mes-
sages to be turned into packets of information, sent to the network
controller, transmitted across a communications medium, and re-
assembled by the destination system. Packet ordering and data
correction must take place. Again, user programs might not coor-
dinate access to the network device, or they might receive packets
destined for other processes.

e. Error detection. Error detection occurs at both the hardware and
software levels. At the hardware level, all data transfers must be
inspected to ensure that data have not been corrupted in transit. All
data on media must be checked to be sure they have not changed
since they were written to the media. At the software level, media
must be checked for data consistency; for instance, whether the
number of allocated and unallocated blocks of storage match the
total number on the device. There, errors are frequently process-



Practice Exercises 7

independent (for instance, the corruption of data on a disk), so there
must be a global program (the operating system) that handles all
types of errors. Also, by having errors processed by the operating
system, processes need not contain code to catch and correct all the
errors possible on a system.

2.10 For certain devices, such as handheld PDAs and cellular telephones, a
disk with a file system may be not be available for the device. In this
situation, the operating system must be stored in firmware.

2.11 Consider a system that would like to run both Windows XP and three
different distributions of Linux (e.g., RedHat, Debian, and Mandrake).
Each operating system will be stored on disk. During system boot-up, a
special program (which we will call the boot manager) will determine
which operating system to boot into. This means that rather initially
booting to an operating system, the boot manager will first run during
system startup. It is this boot manager that is responsible for determining
which system to boot into. Typically boot managers must be stored at
certain locations of the hard disk to be recognized during system startup.
Boot managers often provide the user with a selection of systems to boot
into; boot managers are also typically designed to boot into a default
operating system if no choice is selected by the user.





3C H A P T E R

Processes

Practice Exercises

3.1 a. A method of time sharing must be implemented to allow each
of several processes to have access to the system. This method
involves the preemption of processes that do not voluntarily give
up the CPU (by using a system call, for instance) and the kernel
being reentrant (so more than one process may be executing kernel
code concurrently).

b. Processes and system resources must have protections and must
be protected from each other. Any given process must be limited in
the amount of memory it can use and the operations it can perform
on devices like disks.

c. Care must be taken in the kernel to prevent deadlocks between
processes, so processes aren’t waiting for each other’s allocated
resources.

3.2 The CPU current-register-set pointer is changed to point to the set con-
taining the new context, which takes very little time. If the context is
in memory, one of the contexts in a register set must be chosen and be
moved to memory, and the new context must be loaded from memory
into the set. This process takes a little more time than on systems with
one set of registers, depending on how a replacement victim is selected.

3.3 Only the shared memory segments are shared between the parent pro-
cess and the newly forked child process. Copies of the stack and the
heap are made for the newly created process.

3.4 The “exactly once” semantics ensure that a remore procedure will be
executed exactly once and only once. The general algorithm for ensur-
ing this combines an acknowledgment (ACK) scheme combined with
timestamps (or some other incremental counter that allows the server to
distinguish between duplicate messages).
The general strategy is for the client to send the RPC to the server along
with a timestamp. The client will also start a timeout clock. The client

9



10 Chapter 3 Processes

will then wait for one of two occurrences: (1) it will receive an ACK from
the server indicating that the remote procedure was performed, or (2) it
will time out. If the client times out, it assumes the server was unable
to perform the remote procedure so the client invokes the RPC a second
time, sending a later timestamp. The client may not receive the ACK for
one of two reasons: (1) the original RPC was never received by the server,
or (2) the RPC was correctly received—and performed—by the server
but the ACK was lost. In situation (1), the use of ACKs allows the server
ultimately to receive and perform the RPC. In situation (2), the server will
receive a duplicate RPC and it will use the timestamp to identify it as a
duplicate so as not to perform the RPC a second time. It is important to
note that the server must send a second ACK back to the client to inform
the client the RPC has been performed.

3.5 The server should keep track in stable storage (such as a disk log) in-
formation regarding what RPC operations were received, whether they
were successfully performed, and the results associated with the oper-
ations. When a server crash takes place and a RPC message is received,
the server can check whether the RPC had been previously performed
and therefore guarantee “exactly once” semanctics for the execution of
RPCs.



4C H A P T E R

Threads

Practice Exercises

4.1 (1) A Web server that services each request in a separate thread. 2) (A
parallelized application such as matrix multiplication where (different
parts of the matrix may be worked on in parallel. (3) An (interactive GUI

program such as a debugger where a thread is used (to monitor user
input, another thread represents the running (application, and a third
thread monitors performance.

4.2 (1) User-level threads are unknown by the kernel, whereas the kernel
is aware of kernel threads. (2) On systems using either M:1 or M:N
mapping, user threads are scheduled by the thread library and the kernel
schedules kernel threads. (3) Kernel threads need not be associated with
a process whereas every user thread belongs to a process. Kernel threads
are generally more expensive to maintain than user threads as they must
be represented with a kernel data structure.

4.3 Context switching between kernel threads typically requires saving the
value of the CPU registers from the thread being switched out and restor-
ing the CPU registers of the new thread being scheduled.

4.4 Because a thread is smaller than a process, thread creation typically
uses fewer resources than process creation. Creating a process requires
allocating a process control block (PCB), a rather large data structure.
The PCB includes a memory map, list of open files, and environment
variables. Allocating and managing the memory map is typically the
most time-consuming activity. Creating either a user or kernel thread
involves allocating a small data structure to hold a register set, stack,
and priority.

4.5 Yes. Timing is crucial to real-time applications. If a thread is marked as
real-time but is not bound to an LWP, the thread may have to wait to
be attached to an LWP before running. Consider if a real-time thread is
running (is attached to an LWP) and then proceeds to block (i.e. must
perform I/O, has been preempted by a higher-priority real-time thread,
is waiting for a mutual exclusion lock, etc.) While the real-time thread is

11



12 Chapter 4 Threads

blocked, the LWP it was attached to has been assigned to another thread.
When the real-time thread has been scheduled to run again, it must first
wait to be attached to an LWP. By binding an LWP to a real-time thread
you are ensuring the thread will be able to run with minimal delay once
it is scheduled.

4.6 Please refer to the supporting Web site for source code solution.



5C H A P T E R

CPU Scheduling

Practice Exercises

5.1 n! (n factorial = n × n – 1 × n – 2 × ... × 2 × 1).

5.2 Preemptive scheduling allows a process to be interrupted in the midst of
its execution, taking the CPU away and allocating it to another process.
Nonpreemptive scheduling ensures that a process relinquishes control
of the CPU only when it finishes with its current CPU burst.

5.3 a. 10.53

b. 9.53

c. 6.86
Remember that turnaround time is finishing time minus arrival time, so
you have to subtract the arrival times to compute the turnaround times.
FCFS is 11 if you forget to subtract arrival time.

5.4 Processes that need more frequent servicing, for instance, interactive
processes such as editors, can be in a queue with a small time quan-
tum. Processes with no need for frequent servicing can be in a queue
with a larger quantum, requiring fewer context switches to complete the
processing, and thus making more efficient use of the computer.

5.5 a. The shortest job has the highest priority.

b. The lowest level of MLFQ is FCFS.

c. FCFS gives the highest priority to the job having been in existence
the longest.

d. None.

5.6 It will favor the I/O-bound programs because of the relatively short CPU

burst request by them; however, the CPU-bound programs will not starve
because the I/O-bound programs will relinquish the CPU relatively often
to do their I/O.

13



14 Chapter 5 CPU Scheduling

5.7 PCS scheduling is done local to the process. It is how the thread library
schedules threads onto available LWPs. SCS scheduling is the situation
where the operating system schedules kernel threads. On systems using
either many-to-one or many-to-many, the two scheduling models are
fundamentally different. On systems using one-to-one, PCS and SCS are
the same.

5.8 Yes, otherwise a user thread may have to compete for an available LWP

prior to being actually scheduled. By binding the user thread to an LWP,
there is no latency while waiting for an available LWP; the real-time user
thread can be scheduled immediately.



6C H A P T E R

Process
Synchronization

Practice Exercises

6.1 The system clock is updated at every clock interrupt. If interrupts were
disabled—particularly for a long period of time—it is possible the sys-
tem clock could easily lose the correct time. The system clock is also used
for scheduling purposes. For example, the time quantum for a process
is expressed as a number of clock ticks. At every clock interrupt, the
scheduler determines if the time quantum for the currently running pro-
cess has expired. If clock interrupts were disabled, the scheduler could
not accurately assign time quantums. This effect can be minimized by
disabling clock interrupts for only very short periods.

6.2 Please refer to the supporting Web site for source code solution.

6.3 These operating systems provide different locking mechanisms depend-
ing on the application developers’ needs. Spinlocks are useful for mul-
tiprocessor systems where a thread can run in a busy-loop (for a short
period of time) rather than incurring the overhead of being put in a sleep
queue. Mutexes are useful for locking resources. Solaris 2 uses adaptive
mutexes, meaning that the mutex is implemented with a spin lock on
multiprocessor machines. Semaphores and condition variables are more
appropriate tools for synchronization when a resource must be held for
a long period of time, since spinning is inefficient for a long duration.

6.4 Volatile storage refers to main and cache memory and is very fast. How-
ever, volatile storage cannot survive system crashes or powering down
the system. Nonvolatile storage survives system crashes and powered-
down systems. Disks and tapes are examples of nonvolatile storage. Re-
cently, USB devices using erasable program read-only memory (EPROM)
have appeared providing nonvolatile storage. Stable storage refers to
storage that technically can never be lost as there are redundant backup
copies of the data (usually on disk).

6.5 A checkpoint log record indicates that a log record and its modified data
has been written to stable storage and that the transaction need not to be
redone in case of a system crash. Obviously, the more often checkpoints

15



16 Chapter 6 Process Synchronization

are performed, the less likely it is that redundant updates will have to
be performed during the recovery process.

• System performance when no failure occurs—If no failures occur,
the system must incur the cost of performing checkpoints that are
essentially unnecessary. In this situation, performing checkpoints
less often will lead to better system performance.

• The time it takes to recover from a system crash—The existence
of a checkpoint record means that an operation will not have to
be redone during system recovery. In this situation, the more often
checkpoints were performed, the faster the recovery time is from a
system crash.

• The time it takes to recover from a disk crash—The existence of
a checkpoint record means that an operation will not have to be
redone during system recovery. In this situation, the more often
checkpoints were performed, the faster the recovery time is from a
disk crash.

6.6 A transaction is a series of read and write operations upon some data fol-
lowed by a commit operation. If the series of operations in a transaction
cannot be completed, the transaction must be aborted and the opera-
tions that did take place must be rolled back. It is important that the
series of operations in a transaction appear as one indivisible operation
to ensure the integrity of the data being updated. Otherwise, data could
be compromised if operations from two (or more) different transactions
were intermixed.

6.7 A schedule that is allowed in the two-phase locking protocol but not in
the timestamp protocol is:

step T0 T1 Precedence
1 lock-S(A)
2 read(A)
3 lock-X(B)
4 write(B)
5 unlock(B)
6 lock-S(B)
7 read(B) T1 → T0

8 unlock(A)
9 unlock(B)

This schedule is not allowed in the timestamp protocol because at step
7, the W-timestamp of B is 1.

A schedule that is allowed in the timestamp protocol but not in the
two-phase locking protocol is:



Practice Exercises 17

step T0 T1 T2

1 write(A)
2 write(A)
3 write(A)
4 write(B)
5 write(B)

This schedule cannot have lock instructions added to make it legal under
two-phase locking protocol because T1 must unlock (A) between steps 2
and 3, and must lock (B) between steps 4 and 5.





7C H A P T E R

Deadlocks

Practice Exercises

7.1 • Two cars crossing a single-lane bridge from opposite directions.

• A person going down a ladder while another person is climbing up
the ladder.

• Two trains traveling toward each other on the same track.

• Two carpenters who must pound nails. There is a single hammer
and a single bucket of nails. Deadlock occurs if one carpenter has
the hammer and the other carpenter has the nails.

7.2 An unsafe state may not necessarily lead to deadlock, it just means that
we cannot guarantee that deadlock will not occur. Thus, it is possible
that a system in an unsafe state may still allow all processes to complete
without deadlock occurring. Consider the situation where a system has
12 resources allocated among processes P0, P1, and P2. The resources are
allocated according to the following policy:

Max Current Need
P0 10 5 5
P1 4 2 2
P2 9 3 6

Currently there are two resources available. This system is in an un-
safe state as process P1 could complete, thereby freeing a total of four
resources. But we cannot guarantee that processes P0 and P2 can com-
plete. However, it is possible that a process may release resources before
requesting any further. For example, process P2 could release a resource,
thereby increasing the total number of resources to five. This allows pro-
cess P0 to complete, which would free a total of nine resources, thereby
allowing process P2 to complete as well.

7.3 Answer: This is probably not a good solution because it yields too large
a scope. It is better to define a locking policy with as narrow a scope as
possible.

19



20 Chapter 7 Deadlocks

for (int i = 0; i < n; i++) {

// first find a thread that can finish

for (int j = 0; j < n; j++) {

if (!finish[j]) {

boolean temp = true;

for (int k = 0; k < m; k++) {

if (need[j][k] > work[k])

temp = false;

}

if (temp) { // if this thread can finish

finish[j] = true;

for (int x = 0; x < m; x++)

work[x] += work[j][x];

}

}

}

}
Figure 7.1 Banker’s algorithm safety algorithm.

7.4 Figure 7.1 provides Java code that implement the safety algorithm of
the banker’s algorithm (the complete implementation of the banker’s
algorithm is available with the source code download).
As can be seen, the nested outer loops—both of which loop through n
times—provide the n2 performance. Within these outer loops are two
sequential inner loops which loop m times. The big-oh of this algorithm
is therefore O(m × n2).

7.5 An argument for installing deadlock avoidance in the system is that
we could ensure deadlock would never occur. In addition, despite the
increase in turnaround time, all 5,000 jobs could still run.
An argument against installing deadlock avoidance software is that
deadlocks occur infrequently and they cost little when they do occur.

7.6 Starvation is a difficult topic to define as it may mean different things
for different systems. For the purposes of this question, we will de-
fine starvation as the situation whereby a process must wait beyond
a reasonable period of time—perhaps indefinitely—before receiving a
requested resource. One way of detecting starvation would be to first
identify a period of time—T —that is considered unreasonable. When a
process requests a resource, a timer is started. If the elapsed time exceeds
T , then the process is considered to be starved.
One strategy for dealing with starvation would be to adopt a policy
where resources are assigned only to the process that has been waiting
the longest. For example, if process Pa has been waiting longer for re-
source X than process Pb , the request from process Pb would be deferred
until process Pa ’s request has been satisfied.
Another strategy would be less strict than what was just mentioned. In
this scenario, a resource might be granted to a process that has waited less
than another process, providing that the other process is not starving.



Practice Exercises 21

However, if another process is considered to be starving, its request
would be satisfied first.

7.7 a. Deadlock cannot occur because preemption exists.

b. Yes. A process may never acquire all the resources it needs if they
are continuously preempted by a series of requests such as those
of process C.

7.8 Yes. The Max vector represents the maximum request a process may
make. When calculating the safety algorithm we use the Need matrix,
which represents Max — Allocation. Another way to think of this is Max
= Need + Allocation. According to the question, the Waiting matrix fulfills
a role similar to the Need matrix, therefore Max = Waiting + Allocation.

7.9 No. This follows directly from the hold-and-wait condition.





8C H A P T E R

Main Memory

Practice Exercises

8.1 A logical address does not refer to an actual existing address; rather,
it refers to an abstract address in an abstract address space. Contrast
this with a physical address that refers to an actual physical address in
memory. A logical address is generated by the CPU and is translated into
a physical address by the memory management unit(MMU). Therefore,
physical addresses are generated by the MMU.

8.2 The major advantage of this scheme is that it is an effective mechanism
for code and data sharing. For example, only one copy of an editor or
a compiler needs to be kept in memory, and this code can be shared
by all processes needing access to the editor or compiler code. Another
advantage is protection of code against erroneous modification. The
only disadvantage is that the code and data must be separated, which is
usually adhered to in a compiler-generated code.

8.3 Recall that paging is implemented by breaking up an address into a page
and offset number. It is most efficient to break the address into X page
bits and Y offset bits, rather than perform arithmetic on the address to
calculate the page number and offset. Because each bit position repre-
sents a power of 2, splitting an address between bits results in a page
size that is a power of 2.

8.4 a. Logical address: 16 bits

b. Physical address: 15 bits

8.5 By allowing two entries in a page table to point to the same page frame
in memory, users can share code and data. If the code is reentrant, much
memory space can be saved through the shared use of large programs
such as text editors, compilers, and database systems. “Copying” large
amounts of memory could be effected by having different page tables
point to the same memory location.

23



24 Chapter 8 Main Memory

However, sharing of nonreentrant code or data means that any user
having access to the code can modify it and these modifications would
be reflected in the other user’s “copy.”

8.6 Since segment tables are a collection of base–limit registers, segments
can be shared when entries in the segment table of two different jobs
point to the same physical location. The two segment tables must have
identical base pointers, and the shared segment number must be the
same in the two processes.

8.7 Both of these problems reduce to a program being able to reference
both its own code and its data without knowing the segment or page
number associated with the address. MULTICS solved this problem by
associating four registers with each process. One register had the address
of the current program segment, another had a base address for the stack,
another had a base address for the global data, and so on. The idea is
that all references have to be indirect through a register that maps to
the current segment or page number. By changing these registers, the
same code can execute for different processes without the same page or
segment numbers.

8.8 a. Protection not necessary, set system key to 0.

b. Set system key to 0 when in supervisor mode.

c. Region sizes must be fixed in increments of 2k bytes, allocate key
with memory blocks.

d. Same as above.

e. Frame sizes must be in increments of 2k bytes, allocate key with
pages.

f. Segment sizes must be in increments of 2k bytes, allocate key with
segments.



9C H A P T E R

Virtual
Memory

Practice Exercises

9.1 A page fault occurs when an access to a page that has not been brought
into main memory takes place. The operating system verifies the mem-
ory access, aborting the program if it is invalid. If it is valid, a free frame
is located and I/O is requested to read the needed page into the free
frame. Upon completion of I/O, the process table and page table are
updated and the instruction is restarted.

9.2 a. n

b. p

9.3 a. Stack—good.

b. Hashed symbol table—not good.

c. Sequential search—good.

d. Binary search—not good.

e. Pure code—good.

f. Vector operations—good.

g. Indirection—not good.

9.4
Rank Algorithm Suffer from Belady’s anomaly

1 Optimal no
2 LRU no
3 Second-chance yes
4 FIFO yes

9.5 The costs are additional hardware and slower access time. The benefits
are good utilization of memory and larger logical address space than
physical address space.

25



26 Chapter 9 Virtual Memory

9.6
effective access time = 0.99 × (1 msec + 0.008 × (2 msec)

+ 0.002 × (10,000 msec + 1,000 msec)
+ 0.001 × (10,000 msec + 1,000 msec)

= (0.99 + 0.016 + 22.0 + 11.0) msec
= 34.0 msec

9.7 a. 50

b. 5,000

9.8
Number of frames LRU FIFO Optimal

1 20 20 20
2 18 18 15
3 15 16 11
4 10 14 8
5 8 10 7
6 7 10 7
7 7 7 7

9.9 You can use the valid/invalid bit supported in hardware to simulate the
reference bit. Initially set the bit to invalid. On first reference a trap to the
operating system is generated. The operating system will set a software
bit to 1 and reset the valid/invalid bit to valid.

9.10 No. An optimal algorithm will not suffer from Belady’s anomaly because
—by definition—an optimal algorithm replaces the page that will not
be used for the longest time. Belady’s anomaly occurs when a page-
replacement algorithm evicts a page that will be needed in the immediate
future. An optimal algorithm would not have selected such a page.

9.11 a. FIFO. Find the first segment large enough to accommodate the in-
coming segment. If relocation is not possible and no one segment
is large enough, select a combination of segments whose memories
are contiguous, which are “closest to the first of the list” and which
can accommodate the new segment. If relocation is possible, rear-
range the memory so that the first N segments large enough for
the incoming segment are contiguous in memory. Add any leftover
space to the free-space list in both cases.

b. LRU. Select the segment that has not been used for the longest pe-
riod of time and that is large enough, adding any leftover space to
the free space list. If no one segment is large enough, select a com-
bination of the “oldest” segments that are contiguous in memory (if
relocation is not available) and that are large enough. If relocation
is available, rearrange the oldest N segments to be contiguous in
memory and replace those with the new segment.

9.12 a. Thrashing is occurring.

b. CPU utilization is sufficiently high to leave things alone, and in-
crease degree of multiprogramming.

c. Increase the degree of multiprogramming.



Practice Exercises 27

9.13 The page table can be set up to simulate base and limit registers provided
that the memory is allocated in fixed-size segments. In this way, the base
of a segment can be entered into the page table and the valid/invalid bit
used to indicate that portion of the segment as resident in the memory.
There will be some problem with internal fragmentation.





10C H A P T E R

File-System
Interface

Practice Exercises

10.1 Deleting all files not specifically saved by the user has the advantage of
minimizing the file space needed for each user by not saving unwanted
or unnecessary files. Saving all files unless specifically deleted is more
secure for the user in that it is not possible to lose files inadvertently by
forgetting to save them.

10.2 Some systems allow different file operations based on the type of the
file (for instance, an ascii file can be read as a stream while a database
file can be read via an index to a block). Other systems leave such
interpretation of a file’s data to the process and provide no help in
accessing the data. The method that is “better” depends on the needs
of the processes on the system, and the demands the users place on the
operating system. If a system runs mostly database applications, it may
be more efficient for the operating system to implement a database-
type file and provide operations, rather than making each program
implement the same thing (possibly in different ways). For general-
purpose systems it may be better to only implement basic file types to
keep the operating system size smaller and allow maximum freedom
to the processes on the system.

10.3 An advantage of having the system support different file structures is
that the support comes from the system; individual applications are
not required to provide the support. In addition, if the system provides
the support for different file structures, it can implement the support
presumably more efficiently than an application.
The disadvantage of having the system provide support for defined file
types is that it increases the size of the system. In addition, applications
that may require different file types other than what is provided by the
system may not be able to run on such systems.
An alternative strategy is for the operating system to define no support
for file structures and instead treat all files as a series of bytes. This is
the approach taken by UNIX systems. The advantage of this approach
is that it simplifies the operating system support for file systems, as the

29



30 Chapter 10 File-System Interface

system no longer has to provide the structure for different file types.
Furthermore, it allows applications to define file structures, thereby al-
leviating the situation where a system may not provide a file definition
required for a specific application.

10.4 If arbitrarily long names can be used then it is possible to simulate a
multilevel directory structure. This can be done, for example, by using
the character “ .” to indicate the end of a subdirectory. Thus, for example,
the name jim.java.F1 specifies that F1 is a file in subdirectory java which
in turn is in the root directory jim.
If file names were limited to seven characters, then the above scheme
could not be utilized and thus, in general, the answer is no. The next best
approach in this situation would be to use a specific file as a symbol
table (directory) to map arbitrarily long names (such as jim.java.F1)
into shorter arbitrary names (such as XX00743), which are then used
for actual file access.

10.5 The purpose of the open() and close() operations is:

• The open() operation informs the system that the named file is
about to become active.

• The close() operation informs the system that the named file is
no longer in active use by the user who issued the close operation.

10.6 Two possible applications are:

a. Print the content of the file.

b. Print the content of record i. This record can be found using hash-
ing or index techniques.

10.7 a. One piece of information kept in a directory entry is file location.
If a user could modify this location, then he could access other
files defeating the access-protection scheme.

b. Do not allow the user to directly write onto the subdirectory.
Rather, provide system operations to do so.

10.8 a. There are two methods for achieving this:

i. Create an access control list with the names of all 4990 users.

ii. Put these 4990 users in one group and set the group access
accordingly. This scheme cannot always be implemented since
user groups are restricted by the system.

b. The universal access to files applies to all users unless their name
appears in the access-control list with different access permission.
With this scheme you simply put the names of the remaining
ten users in the access control list but with no access privileges
allowed.

10.9 • File control list. Since the access control information is concentrated
in one single place, it is easier to change access control information
and this requires less space.

• User control list. This requires less overhead when opening a file.



11C H A P T E R

File-System
Implementation

Practice Exercises

11.1 The results are:

Contiguous Linked Indexed

a. 201 1 1
b. 101 52 1
c. 1 3 1
d. 198 1 0
e. 98 52 0
f. 0 100 0

11.2 There would be multiple paths to the same file, which could confuse
users or encourage mistakes (deleting a file with one path deletes the
file in all the other paths).

11.3 In case of system crash (memory failure) the free-space list would not
be lost as it would be if the bit map had been stored in main memory.

11.4 • Contiguous—if file is usually accessed sequentially, if file is rela-
tively small.

• Linked—if file is large and usually accessed sequentially.

• Indexed—if file is large and usually accessed randomly.

11.5 This method requires more overhead then the standard contiguous
allocation. It requires less overhead than the standard linked allocation.

11.6 Caches allow components of differing speeds to communicate more ef-
ficiently by storing data from the slower device, temporarily, in a faster
device (the cache). Caches are, almost by definition, more expensive
than the device they are caching for, so increasing the number or size
of caches would increase system cost.

11.7 Dynamic tables allow more flexibility in system use growth — tables
are never exceeded, avoiding artificial use limits. Unfortunately, kernel

31



32 Chapter 11 File-System Implementation

structures and code are more complicated, so there is more potential
for bugs. The use of one resource can take away more system resources
(by growing to accommodate the requests) than with static tables.

11.8 VFS introduces a layer of indirection in the file system implementation.
In many ways, it is similar to object-oriented programming techniques.
System calls can be made generically (independent of file system type).
Each file system type provides its function calls and data structures
to the VFS layer. A system call is translated into the proper specific
functions for the target file system at the VFS layer. The calling program
has no file-system-specific code, and the upper levels of the system call
structures likewise are file system-independent. The translation at the
VFS layer turns these generic calls into file-system-specific operations.



12C H A P T E RMass
Storage
Structure

Practice Exercises

12.1 a. t = 0.95 + 0.05L

b. FCFS 362.60; SSTF 95.80; SCAN 497.95; LOOK 174.50; C-SCAN 500.15;
(and C-LOOK 176.70). SSTF is still the winner, and LOOK is the
runner-up.

c. (362.60 − 95.80)/362.60 = 0.74 The percentage speedup of SSTF

over FCFS is 74%, with respect to the seek time. If we include the
overhead of rotational latency and data transfer, the percentage
speedup will be less.

12.2 In a single-user environment, the I/O queue usually is empty. Requests
generally arrive from a single process for one block or for a sequence of
consecutive blocks. In these cases, FCFS is an economical method of disk
scheduling. But LOOK is nearly as easy to program and will give much
better performance when multiple processes are performing concurrent
I/O, such as when a Web browser retrieves data in the background while
the operating system is paging and another application is active in the
foreground.

12.3 The center of the disk is the location having the smallest average dis-
tance to all other tracks. Thus the disk head tends to move away from
the edges of the disk. Here is another way to think of it. The current
location of the head divides the cylinders into two groups. If the head is
not in the center of the disk and a new request arrives, the new request
is more likely to be in the group that includes the center of the disk;
thus, the head is more likely to move in that direction.

12.4 Most disks do not export their rotational position information to the
host. Even if they did, the time for this information to reach the sched-
uler would be subject to imprecision and the time consumed by the
scheduler is variable, so the rotational position information would be-
come incorrect. Further, the disk requests are usually given in terms

33



34 Chapter 12 Mass-Storage Structure

of logical block numbers, and the mapping between logical blocks and
physical locations is very complex.

12.5 How would use of a RAM disk affect your selection of a disk-scheduling
algorithm? What factors would you need to consider? Do the same
considerations apply to hard-disk scheduling, given that the file system
stores recently used blocks in a buffer cache in main memory?
Disk scheduling attempts to reduce the overhead time of disk head
positioning. Since a RAM disk has uniform access times, scheduling
is largely unnecessary. The comparison between RAM disk and the
main memory disk-cache has no implications for hard-disk scheduling
because we schedule only the buffer cache misses, not the requests that
find their data in main memory.

12.6 A system can perform only at the speed of its slowest bottleneck. Disks
or disk controllers are frequently the bottleneck in modern systems as
their individual performance cannot keep up with that of the CPU and
system bus. By balancing I/O among disks and controllers, neither an
individual disk nor a controller is overwhelmed, so that bottleneck is
avoided.

12.7 If code pages are stored in swap space, they can be transferred more
quickly to main memory (because swap space allocation is tuned for
faster performance than general file system allocation). Using swap
space can require startup time if the pages are copied there at process
invocation rather than just being paged out to swap space on demand.
Also, more swap space must be allocated if it is used for both code and
data pages.

12.8 Truly stable storage would never lose data. The fundamental technique
for stable storage is to maintain multiple copies of the data, so that if
one copy is destroyed, some other copy is still available for use. But for
any scheme, we can imagine a large enough disaster that all copies are
destroyed.

12.9 a. The disk spins 120 times per second, and each spin transfers a
track of 80 KB. Thus, the sustained transfer rate can be approxi-
mated as 9600 KB/s.

b. Suppose that 100 cylinders is a huge transfer. The transfer rate is
total bytes divided by total time. Bytes: 100 cyl * 20 trk/cyl * 80
KB/trk, i.e., 160,000 KB. Time: rotation time + track switch time +
cylinder switch time. Rotation time is 2000 trks/120 trks per sec,
i.e., 16.667 s. Track switch time is 19 switch per cyl * 100 cyl * 0.5
ms, i.e., 950 ms. Cylinder switch time is 99 * 2 ms, i.e., 198 ms.
Thus, the total time is 16.667 + 0.950 + 0.198, i.e., 17.815 s. (We
are ignoring any initial seek and rotational latency, which might
add about 12 ms to the schedule, i.e. 0.1%.) Thus the transfer rate
is 8981.2 KB/s. The overhead of track and cylinder switching is
about 6.5%.

c. The time per transfer is 8 ms to seek + 4.167 ms average rotational
latency + 0.052 ms (calculated from 1/(120 trk per second * 160



Practice Exercises 35

sector per trk)) to rotate one sector past the disk head during
reading. We calculate the transfers per second as 1/(0.012219),
i.e., 81.8. Since each transfer is 0.5 KB, the transfer rate is 40.9
KB/s.

d. We ignore track and cylinder crossings for simplicity. For reads of
size 4 KB, 8 KB, and 64 KB, the corresponding I/Os per second are
calculated from the seek, rotational latency, and rotational trans-
fer time as in the previous item, giving (respectively) 1/(0.0126),
1/(0.013), and 1/(0.019). Thus we get 79.4, 76.9, and 52.6 transfers
per second, respectively. Transfer rates are obtained from 4, 8, and
64 times these I/O rates, giving 318 KB/s, 615 KB/s, and 3366 KB/s,
respectively.

e. From 1/(3+4.167+0.83) we obtain 125 I/Os per second. From 8 KB

per I/O we obtain 1000 KB/s.

12.10 For 8 KB random I/Os on a lightly loaded disk, where the random access
time is calculated to be about 13 ms (see Exercise 12.9), the effective
transfer rate is about 615 MB/s. In this case, 15 disks would have an
aggregate transfer rate of less than 10 MB/s, which should not saturate
the bus. For 64 KB random reads to a lightly loaded disk, the transfer
rate is about 3.4 MB/s, so five or fewer disk drives would saturate the
bus. For 8 KB reads with a large enough queue to reduce the average
seek to 3 ms, the transfer rate is about 1 MB/s, so the bus bandwidth
may be adequate to accommodate 15 disks.

12.11 Since the disk holds 22,400,000 sectors, the probability of requesting one
of the 100 remapped sectors is very small. An example of a worst-case
event is that we attempt to read, say, an 8 KB page, but one sector from
the middle is defective and has been remapped to the worst possible
location on another track in that cylinder. In this case, the time for the
retrieval could be 8 ms to seek, plus two track switches and two full
rotational latencies. It is likely that a modern controller would read all
the requested good sectors from the original track before switching to
the spare track to retrieve the remapped sector and thus would incur
only one track switch and rotational latency. So the time would be 8
ms seek + 4.17 ms average rotational latency + 0.05 ms track switch +
8.3 ms rotational latency + 0.83 ms read time (8 KBis 16 sectors, 1/10
of a track rotation). Thus, the time to service this request would be
21.8 ms, giving an I/O rate of 45.9 requests per second and an effective
bandwidth of 367 KB/s. For a severely time-constrained application
this might matter, but the overall impact in the weighted average of
100 remapped sectors and 22.4 million good sectors is nil.

12.12 Two bad outcomes could result. One possibility is starvation of the
applications that issue blocking I/Os to tapes that are not mounted in
drives. Another possibility is thrashing, as the jukebox is commanded
to switch tapes after every I/O operation.

12.13 Tapes are easily removable, so they are useful for off-site backups and
for bulk transfer of data (by sending cartridges). As a rule, a magnetic
hard disk is not a removable medium.



36 Chapter 12 Mass-Storage Structure

12.14 a. For 512 bytes, the effective transfer rate is calculated as follows.
ETR = transfer size/transfer time.
If X is transfer size, then transfer time is ((X/STR) + latency).
Transfer time is 15ms + (512B/5MB per second) = 15.0097ms.
Effective transfer rate is therefore 512B/15.0097ms = 33.12 KB/sec.
ETR for 8KB = .47MB/sec.
ETR for 1MB = 4.65MB/sec.
ETR for 16MB = 4.98MB/sec.

b. Utilization of the device for 512B = 33.12 KB/sec / 5MB/sec =
.0064 = .64
For 8KB = 9.4%.
For 1MB = 93%.
For 16MB = 99.6%.

c. Calculate .25 = ETR/STR, solving for transfer size X.
STR = 5MB, so 1.25MB/S = ETR.
1.25MB/S * ((X/5) + .015) = X.
.25X + .01875 = X.
X = .025MB.

d. A disk is a random-access device for transfers larger than K bytes
(where K > disk block size), and is a sequential-access device for
smaller transfers.

e. Calculate minimum transfer size for acceptable utilization of cache
memory:
STR = 800MB, ETR = 200, latency = 8 * 10−9.
200 (XMB/800 + 8 X 10−9) = XMB.
.25XMB + 1600 * 10−9 = XMB.
X = 2.24 bytes.
Calculate for memory:
STR = 80MB, ETR = 20, L = 60 * 10−9.
20 (XMB/80 + 60 * 10−9) = XMB.
.25XMB + 1200 * 10−9 = XMB.
X = 1.68 bytes.
Calculate for tape:
STR = 2MB, ETR = .5, L = 60s.
.5 (XMB/2 + 60) = XMB.
.25XMB + 30 = XMB.
X = 40MB.

f. It depends upon how it is being used. Assume we are using
the tape to restore a backup. In this instance, the tape acts as a
sequential-access device where we are sequentially reading the
contents of the tape. As another example, assume we are using
the tape to access a variety of records stored on the tape. In this
instance, access to the tape is arbitrary and hence considered
random.

12.15 a. Assume that a disk drive holds 10 GB. Then 100 disks hold 1 TB,
100,000 disks hold 1 PB, and 100,000,000 disks hold 1 EB. To store 4
EBwould require about 400 million disks. If a magnetic tape holds



Practice Exercises 37

40 GB, only 100 million tapes would be required. If an optical tape
holds 50 times more data than a magnetic tape, 2 million optical
tapes would suffice. If a holographic cartridge can store 180 GB,
about 22.2 million cartridges would be required.

b. A 3.5" disk drive is about 1" high, 4" wide, and 6" deep. In feet,
this is 1/12 by 1/3 by 1/2, or 1/72 cubic feet. Packed densely, the
400 million disks would occupy 5.6 million cubic feet. If we allow
a factor of two for air space and space for power supplies, the
required capacity is about 11 million cubic feet.

c. A 1/2" tape cartridge is about 1" high and 4.5" square. The volume
is about 1/85 cubic feet. For 100 million magnetic tapes packed
densely, the volume is about 1.2 million cubic feet. For 2 million
optical tapes, the volume is 23,400 cubic feet.

d. A CD-ROM is 4.75" in diameter and about 1/16" thick. If we assume
that a holostore disk is stored in a library slot that is 5" square and
1/8" wide, we calculate the volume of 22.2 million disks to be
about 40,000 cubic feet.





13C H A P T E R

I/O Systems

Practice Exercises

13.1 Three advantages: Bugs are less likely to cause an operating system
crash
Performance can be improved by utilizing dedicated hardware and
hard-coded algorithms
The kernel is simplified by moving algorithms out of it
Three disadvantages: Bugs are harder to fix—a new firmware version
or new hardware is needed
Improving algorithms likewise require a hardware update rather than
just a kernel or device-driver update
Embedded algorithms could conflict with application’s use of the de-
vice, causing decreased performance.

13.2 It is possible, using the following algorithm. Let’s assume we simply
use the busy-bit (or the command-ready bit; this answer is the same
regardless). When the bit is off, the controller is idle. The host writes
to data-out and sets the bit to signal that an operation is ready (the
equivalent of setting the command-ready bit). When the controller is
finished, it clears the busy bit. The host then initiates the next operation.
This solution requires that both the host and the controller have read
and write access to the same bit, which can complicate circuitry and
increase the cost of the controller.

13.3 Polling can be more efficient than interrupt-driven I/O. This is the case
when the I/O is frequent and of short duration. Even though a single
serial port will perform I/O relatively infrequently and should thus
use interrupts, a collection of serial ports such as those in a terminal
concentrator can produce a lot of short I/O operations, and interrupting
for each one could create a heavy load on the system. A well-timed
polling loop could alleviate that load without wasting many resources
through looping with no I/O needed.

13.4 A hybrid approach could switch between polling and interrupts de-
pending on the length of the I/O operation wait. For example, we

39



40 Chapter 13 I/O Systems

could poll and loop N times, and if the device is still busy at N+1,
we could set an interrupt and sleep. This approach would avoid long
busy-waiting cycles. This method would be best for very long or very
short busy times. It would be inefficient it the I/O completes at N+T
(where T is a small number of cycles) due to the overhead of polling
plus setting up and catching interrupts.
Pure polling is best with very short wait times. Interrupts are best with
known long wait times.

13.5 DMA increases system concurrency by allowing the CPU to perform
tasks while the DMA system transfers data via the system and memory
buses. Hardware design is complicated because the DMA controller
must be integrated into the system, and the system must allow the
DMA controller to be a bus master. Cycle stealing may also be necessary
to allow the CPU and DMA controller to share use of the memory bus.

13.6 Consider a system which performs 50% I/O and 50% computes. Dou-
bling the CPU performance on this system would increase total system
performance by only 50%. Doubling both system aspects would in-
crease performance by 100%. Generally, it is important to remove the
current system bottleneck, and to increase overall system performance,
rather than blindly increasing the performance of individual system
components.

13.7 The STREAMS driver controls a physical device that could be involved
in a STREAMS operation. The STREAMS module modifies the flow of
data between the head (the user interface) and the driver.



14C H A P T E R

Protection

Practice Exercises

14.1 An access list is a list for each object consisting of the domains with a
nonempty set of access rights for that object. A capability list is a list of
objects and the operations allowed on those objects for each domain.

14.2 This would be useful as an extra security measure so that the old content
of memory cannot be accessed, either intentionally or by accident, by
another program. This is especially useful for any highly classified
information.

14.3 D j is a subset of Di .

14.4 A(x,y) is a subset of A(z,y).

14.5 The contents of the stack could be compromised by other process(es)
sharing the stack.

14.6 Hierarchical structure.

14.7 Add an integer counter with the capability.

14.8 Reference counts.

14.9 In earlier chapters we identified a distinction between kernel and user
mode where kernel mode is used for carrying out privileged operations
such as I/O. One reason why I/O must be performed in kernel mode
is that I/O requires accessing the hardware and proper access to the
hardware is necessary for system integrity. If we allow users to perform
their own I/O, we cannot guarantee system integrity.

14.10 A capability list is considered a “protected object” and is accessed only
indirectly by the user. The operating system ensures the user cannot
access the capability list directly.

41





15C H A P T E R

Security

No Practice Exercises

43





16C H A P T E RDistributed
System
Structures

Practice Exercises

16.1 Cost. A fully connected network requires a link between every node in
the network. For a WAN, this may be too costly as communication links
between physically distant hosts may be expensive.

16.2 A token ring is very effective under high sustained load, as no collisions
can occur and each slot may be used to carry a message, providing high
throughput. A token ring is less effective when the load is light (token
processing takes longer than bus access, so any one packet can take
longer to reach its destination) or sporadic.

16.3 All broadcasts would be propagated to all networks, causing a lot of
network traffic. If broadcast traffic were limited to important data (and
very little of it), then broadcast propagation would save gateways from
having to run special software to watch for this data (such as network
routing information) and rebroadcast it.

16.4 There is a performance advantage to caching name translations for
computers located in remote domains: repeated resolution of the same
name from different computers located in the local domain could be
performed locally without requiring a remote name lookup operation.
The disadvantage is that there could be inconsistencies in the name
translations when updates are made in the mapping of names to IP

addresses. These consistency problems could be solved by invalidating
translations, which would require state to be managed regarding which
computers are caching a certain translation and also would require
a number of invalidation messages, or by using leases whereby the
caching entity invalidates a translation after a certain period of time.
The latter approach requires less state and no invalidation messages
but might suffer from temporary inconsistencies.

16.5 Circuit switching guarantees that the network resources required for a
transfer are reserved before the transmission takes place. This ensures
that packets will not be dropped and their delivery would satisfy qual-
ity of service requirements. The disadvantage of circuit switching is that

45



46 Chapter 16 Distributed System Structures

it requires a round-trip message to set-up the reservations and it also
might overprovision resources, thereby resulting in suboptimal use of
the resources. Circuit switching is a viable strategy for applications
that have constant demands regarding network resources and would
require the resources for long periods of time, thereby amortizing the
initial overheads.

16.6 One such issue is making all the processors and storage devices seem
transparent across the network. In other words, the distributed system
should appear as a centralized system to users. The Andrew file system
and NFS provide this feature: the distributed file system appears to the
user as a single file system but in reality it may be distributed across a
network.
Another issue concerns the mobility of users. We want to allow users
to connect to the “system” rather than to a specific machine (although
in reality they may be logging in to a specific machine somewhere in
the distributed system).

16.7 For the same operating system, process migration is relatively straight-
forward, as the state of the process needs to migrate from one processor
to another. This involves moving the address space, state of the CPU

registers, and open files from the source system to the destination.
However, it is important that identical copies of the operating system
are running on the different systems to ensure compatibility. If the op-
erating system are the same, but perhaps different versions are running
on the separate systems, then migrating processes must be sure to fol-
low programming guidelines that are consistent between the different
versions of the operating system.
Java applets provide a nice example of process migration between dif-
ferent operating systems. To hide differences in the underlying system,
the migrated process (i.e., a Java applet) runs on a virtual machine
rather than a specific operating system. All that is required is for the
virtual machine to be running on the system the process migrates to.

16.8 Three common failures in a distributed system include: (1) network
link failure, (2) host failure, (3) storage medium failure. Both (2) and
(3) are failures that could also occur in a centralized system, whereas a
network link failure can occur only in a networked-distributed system.

16.9 No. Many status-gathering programs work from the assumption that
packets may not be received by the destination system. These programs
generally broadcast a packet and assume that at least some other systems
on their network will receive the information. For instance, a daemon
on each system might broadcast the system’s load average and number
of users. This information might be used for process migration target
selection. Another example is a program that determines if a remote
site is both running and accessible over the network. If it sends a query
and gets no reply it knows the system cannot currently be reached.

16.10 Typically distributed systems employ a coordinator process that per-
forms functions needed by other processes in the system. This would



Practice Exercises 47

include enforcing mutual exclusion and—in this case of a ring—re-
placing a lost token.
A scheme similar to the ring algorithm presented in Section 18.6.2 can
be used. The algorithm is as follows:
The ring algorithm assumes that the links are unidirectional and that
processes send their messages to the neighbor on their right. The main
data structure used by the algorithm is the active list, a list that contains
the priority numbers of all active processes in the system when the
algorithm ends; each process maintains its own active list.

a. If process Pi detects a coordinator failure, it creates a new active
list that is initially empty. It then sends a message elect(i) to its
right neighbor, and adds the number i to its active list.

b. If Pi receives a message elect(j) from the process on the left, it must
respond in one of three ways:

i. If this is the first elect message it has seen or sent, Pi creates
a new active list with the numbers i and j. It then sends the
message elect(i), followed by the message elect(j).

ii. If i 6= j, that is, the message received does not contain Pi ’s num-
ber, then Pi adds j to its active list and forwards the message
to its right neighbor.

iii. If i = j, that is, Pi receives the message elect(i), then the active list
for Pi now contains the numbers of all the active processes in
the system. Process Pi can now determine the largest number
in the active list to identify the new coordinator process.

16.11 One technique would be for B to periodically send a I-am-up message
to A indicating it is still alive. If A does not receive an I-am-up message,
it can assume either B—or the network link—is down. Note that an
I-am-up message does not allow A to distinguish between each type of
failure. One technique that allows A better to determine if the network
is down is to send an Are-you-up message to B using an alternate route.
If it receives a reply, it can determine that indeed the network link is
down and that B is up.
If we assume that A knows B is up and is reachable (via the I-am-
up mechanism) and that A has some value N that indicates a normal
response time, A could monitor the response time from B and compare
values to N, allowing A to determine if B is overloaded or not.
The implications of both of these techniques are that A could choose
another host—say C—in the system if B is either down, unreachable,
or overloaded.





17C H A P T E R

Distributed File
Systems

No Practice Exercises

49





18C H A P T E R

Distributed
Coordination

No Practice Exercises

51





19C H A P T E R

Real-time
Systems

No Practice Exercises

53





20C H A P T E R

Multimedia
Systems

No Practice Exercises

55





21C H A P T E R

The Linux
System

Practice Exercises

21.1 There are two principal drawbacks with the use of modules. The first is
size: module management consumes unpageable kernel memory, and
a basic kernel with a number of modules loaded will consume more
memory than an equivalent kernel with the drivers compiled into the
kernel image itself. This can be a very significant issue on machines
with limited physical memory.

The second drawback is that modules can increase the complexity
of the kernel bootstrap process. It is hard to load up a set of modules
from disk if the driver needed to access that disk itself a module that
needs to be loaded. As a result, managing the kernel bootstrap with
modules can require extra work on the part of the administrator: the
modules required to bootstrap need to be placed into a ramdisk image
that is loaded alongside the initial kernel image when the system is
initialized.

In certain cases it is better to use a modular kernel, and in other
cases it is better to use a kernel with its device drivers prelinked. Where
minimizing the size of the kernel is important, the choice will depend
on how often the various device drivers are used. If they are in con-
stant use, then modules are unsuitable. This is especially true where
drivers are needed for the boot process itself. On the other hand, if
some drivers are not always needed, then the module mechanism al-
lows those drivers to be loaded and unloaded on demand, potentially
offering a net saving in physical memory.

Where a kernel is to be built that must be usable on a large variety
of very different machines, then building it with modules is clearly
preferable to using a single kernel with dozens of unnecessary drivers
consuming memory. This is particularly the case for commercially dis-
tributed kernels, where supporting the widest variety of hardware in
the simplest manner possible is a priority.

However, if a kernel is being built for a single machine whose
configuration is known in advance, then compiling and using modules

57



58 Chapter 21 The Linux System

may simply be an unnecessary complexity. In cases like this, the use of
modules may well be a matter of taste.

21.2 Thread implementations can be broadly classified into two groups:
kernel-based threads and user-mode threads. User-mode thread pack-
ages rely on some kernel support—they may require timer interrupt
facilities, for example—but the scheduling between threads is not per-
formed by the kernel but by some library of user-mode code. Multiple
threads in such an implementation appear to the operating system as a
single execution context. When the multithreaded process is running,
it decides for itself which of its threads to execute, using non-local
jumps to switch between threads according to its own preemptive or
non-preemptive scheduling rules.

Alternatively, the operating system kernel may provide support for
threads itself. In this case, the threads may be implemented as separate
processes that happen to share a complete or partial common address
space, or they may be implemented as separate execution contexts
within a single process. Whichever way the threads are organized, they
appear as fully independent execution contexts to the application.

Hybrid implementations are also possible, where a large number of
threads are made available to the application using a smaller number
of kernel threads. Runnable user threads are run by the first available
kernel thread.

In Linux, threads are implemented within the kernel by a clone
mechanism that creates a new process within the same virtual address
space as the parent process. Unlike some kernel-based thread packages,
the Linux kernel does not make any distinction between threads and
processes: a thread is simply a process that did not create a new virtual
address space when it was initialized.

The main advantage of implementing threads in the kernel rather
than in a user-mode library are that:

• kernel-threaded systems can take advantage of multiple processors
if they are available; and

• if one thread blocks in a kernel service routine (for example, a
system call or page fault), other threads are still able to run.

A lesser advantage is the ability to assign different security attributes
to each thread.

User-mode implementations do not have these advantages. Because
such implementations run entirely within a single kernel execution con-
text, only one thread can ever be running at once, even if multiple CPUs
are available. For the same reason, if one thread enters a system call,
no other threads can run until that system call completes. As a result,
one thread doing a blocking disk read will hold up every thread in the
application. However, user-mode implementations do have their own
advantages. The most obvious is performance: invoking the kernel’s
own scheduler to switch between threads involves entering a new pro-
tection domain as the CPU switches to kernel mode, whereas switching
between threads in user mode can be achieved simply by saving and
restoring the main CPU registers. User-mode threads may also con-



Practice Exercises 59

sume less system memory: most UNIX systems will reserve at least a
full page for a kernel stack for each kernel thread, and this stack may
not be pageable.

The hybrid approach, implementing multiple user threads over a
smaller number of kernel threads, allows a balance between these trade-
offs to be achieved. The kernel threads will allow multiple threads to
be in blocking kernel calls at once and will permit running on mul-
tiple CPUs, and user-mode thread switching can occur within each
kernel thread to perform lightweight threading without the overheads
of having too many kernel threads. The downside of this approach
is complexity: giving control over the tradeoff complicates the thread
library’s user interface.

21.3 The primary impact of disallowing paging of kernel memory in Linux
is that the non-preemptability of the kernel is preserved. Any process
taking a page fault, whether in kernel or in user mode, risks being
rescheduled while the required data is paged in from disk. Because the
kernel can rely on not being rescheduled during access to its primary
data structures, locking requirements to protect the integrity of those
data structures are very greatly simplified. Although design simplicity
is a benefit in itself, it also provides an important performance advan-
tage on uniprocessor machines due to the fact that it is not necessary to
do additional locking on most internal data structures.

There are a number of disadvantages to the lack of pageable kernel
memory, however. First of all, it imposes constraints on the amount of
memory that the kernel can use. It is unreasonable to keep very large
data structures in non-pageable memory, since that represents physical
memory that absolutely cannot be used for anything else. This has two
impacts: first of all, the kernel must prune back many of its internal data
structures manually, instead of being able to rely on a single virtual-
memory mechanism to keep physical memory usage under control.
Second, it makes it infeasible to implement certain features that require
large amounts of virtual memory in the kernel, such as the /tmp-
filesystem (a fast virtual-memory-based file system found on some
UNIX systems).

Note that the complexity of managing page faults while running
kernel code is not an issue here. The Linux kernel code is already able
to deal with page faults: it needs to be able to deal with system calls
whose arguments reference user memory that may be paged out to
disk.

21.4 The primary advantages of shared libraries are that they reduce the
memory and disk space used by a system, and they enhance maintain-
ability.

When shared libraries are being used by all running programs,
there is only one instance of each system library routine on disk, and
at most one instance in physical memory. When the library in question
is one used by many applications and programs, then the disk and
memory savings can be quite substantial. In addition, the startup time
for running new programs can be reduced, since many of the common



60 Chapter 21 The Linux System

functions needed by that program are likely to be already loaded into
physical memory.

Maintainability is also a major advantage of dynamic linkage over
static. If all running programs use a shared library to access their sys-
tem library routines, then upgrading those routines, either to add new
functionality or to fix bugs, can be done simply by replacing that shared
library. There is no need to recompile or relink any applications; any
programs loaded after the upgrade is complete will automatically pick
up the new versions of the libraries.

There are other advantages too. A program that uses shared libraries
can often be adapted for specific purposes simply by replacing one or
more of its libraries, or even (if the system allows it, and most UNIXs
including Linux do) adding a new one at run time. For example, a
debugging library can be substituted for a normal one to trace a problem
in an application. Shared libraries also allow program binaries to be
linked against commercial, proprietary library code without actually
including any of that code in the program’s final executable file. This is
important because on most UNIX systems, many of the standard shared
libraries are proprietary, and licensing issues may prevent including
that code in executable files to be distributed to third parties.

In some places, however, static linkage is appropriate. One example is
in rescue environments for system administrators. If a system adminis-
trator makes a mistake while installing any new libraries, or if hardware
develops problems, it is quite possible for the existing shared libraries
to become corrupt. As a result, often a basic set of rescue utilities are
linked statically, so that there is an opportunity to correct the fault
without having to rely on the shared libraries functioning correctly.

There are also performance advantages that sometimes make static
linkage preferable in special cases. For a start, dynamic linkage does
increase the startup time for a program, as the linking must now be
done at run time rather than at compile time. Dynamic linkage can also
sometimes increase the maximum working set size of a program (the
total number of physical pages of memory required to run the program).
In a shared library, the user has no control over where in the library
binary file the various functions reside. Since most functions do not
precisely fill a full page or pages of the library, loading a function will
usually result in loading in parts of the surrounding functions, too. With
static linkage, absolutely no functions that are not referenced (directly
or indirectly) by the application need to be loaded into memory.

Other issues surrounding static linkage include ease of distribution:
it is easier to distribute an executable file with static linkage than with
dynamic linkage if the distributor is not certain whether the recipient
will have the correct libraries installed in advance. There may also be
commercial restrictions against redistributing some binaries as shared
libraries. For example, the license for the UNIX “Motif” graphical en-
vironment allows binaries using Motif to be distributed freely as long
as they are statically linked, but the shared libraries may not be used
without a license.



Practice Exercises 61

21.5 Using network sockets rather than shared memory for local commu-
nication has a number of advantages. The main advantage is that the
socket programming interface features a rich set of synchronization
features. A process can easily determine when new data has arrived on
a socket connection, how much data is present, and who sent it. Pro-
cesses can block until new data arrives on a socket, or they can request
that a signal be delivered when data arrives. A socket also manages
separate connections. A process with a socket open for receive can ac-
cept multiple connections to that socket and will be told when new
processes try to connect or when old processes drop their connections.

Shared memory offers none of these features. There is no way
for a process to determine whether another process has delivered or
changed data in shared memory other than by going to look at the
contents of that memory. It is impossible for a process to block and
request a wakeup when shared memory is delivered, and there is no
standard mechanism for other processes to establish a shared memory
link to an existing process.

However, shared memory has the advantage that it is very much
faster than socket communications in many cases. When data is sent
over a socket, it is typically copied from memory to memory multiple
times. Shared memory updates require no data copies: if one process
updates a data structure in shared memory, that update is immediately
visible to all other processes sharing that memory. Sending or receiving
data over a socket requires that a kernel system service call be made
to initiate the transfer, but shared memory communication can be per-
formed entirely in user mode with no transfer of control required.

Socket communication is typically preferred when connection man-
agement is important or when there is a requirement to synchronize
the sender and receiver. For example, server processes will usually es-
tablish a listening socket to which clients can connect when they want
to use that service. Once the socket is established, individual requests
are also sent using the socket, so that the server can easily determine
when a new request arrives and who it arrived from.

In some cases, however, shared memory is preferred. Shared memory
is often a better solution when either large amounts of data are to
be transferred or when two processes need random access to a large
common data set. In this case, however, the communicating processes
may still need an extra mechanism in addition to shared memory to
achieve synchronization between themselves. The X Window System, a
graphical display environment for UNIX, is a good example of this: most
graphic requests are sent over sockets, but shared memory is offered
as an additional transport in special cases where large bitmaps are to
be displayed on the screen. In this case, a request to display the bitmap
will still be sent over the socket, but the bulk data of the bitmap itself
will be sent via shared memory.

21.6 The performance characteristics of disk hardware have changed sub-
stantially in recent years. In particular, many enhancements have been
introduced to increase the maximum bandwidth that can be achieved
on a disk. In a modern system, there can be a long pipeline between the



62 Chapter 21 The Linux System

operating system and the disk’s read-write head. A disk I/O request has
to pass through the computer’s local disk controller, over bus logic to
the disk drive itself, and then internally to the disk, where there is likely
to be a complex controller that can cache data accesses and potentially
optimize the order of I/O requests.

Because of this complexity, the time taken for one I/O request to be
acknowledged and for the next request to be generated and received
by the disk can far exceed the amount of time between one disk sector
passing under the read-write head and the next sector header arriving.
In order to be able efficiently to read multiple sectors at once, disks
will employ a readahead cache. While one sector is being passed back
to the host computer, the disk will be busy reading the next sectors in
anticipation of a request to read them. If read requests start arriving in
an order that breaks this readahead pipeline, performance will drop.
As a result, performance benefits substantially if the operating system
tries to keep I/O requests in strict sequential order.

A second feature of modern disks is that their geometry can be very
complex. The number of sectors per cylinder can vary according to the
position of the cylinder: more data can be squeezed into the longer
tracks nearer the edge of the disk than at the center of the disk. For an
operating system to optimize the rotational position of data on such
disks, it would have to have complete understanding of this geometry,
as well as the timing characteristics of the disk and its controller. In gen-
eral, only the disk’s internal logic can determine the optimal scheduling
of I/Os, and the disk’s geometry is likely to defeat any attempt by the
operating system to perform rotational optimizations.



22C H A P T E R

Windows XP

Practice Exercises

22.1 A 32/64 bit preemptive multitasking operating system supporting mul-
tiple users. (1) The ability automatically to repair application and op-
erating system problems. (2) Better networking and device experience
(including digital photography and video).

22.2 Design goals include security, reliability, Windows and POSIX applica-
tion compatibility, high performance, extensibility, portability and in-
ternational support. (1) Reliability was perceived as a stringent require-
ment and included extensive driver verification, facilities for catching
programming errors in user-level code, and a rigorous certification
process for third-party drivers, applications, and devices. (2) Achiev-
ing high performance required examination of past problem areas such
as I/O performance, server CPU bottlenecks, and the scalability of mul-
tithreaded and multiprocessor environments.

22.3 (1) As the hardware powers on, the BIOS begins executing from ROM

and loads and executes the bootstrap loader from the disk. (2) The
NTLDR program is loaded from the root directory of the identified
system device and determines which boot device contains the operating
system. (3) NTLDR loads the HAL library, kernel, and system hive. The
system hive indicates the required boot drivers and loads them. (4)
Kernel execution begins by initializing the system and creating two
processes: the system process containing all internal worker threads,
and the first user-mode initialization process: SMSS. (5) SMSS further
initializes the system by establishing paging files and loading device
drivers. (6) SMSS creates two processes: WINLOGON, which brings up
the rest of the system, and CSRSS (the Win32 subsystem process).

22.4 (1) The HAL (Hardware Abstraction Layer) creates operating system
portability by hiding hardware differences from the upper layers of
the operating system. Administrative details of low-level facilities are
provided by HAL interfaces. HAL presents a virtual-machine interface
that is used by the kernel dispatcher, the executive and device drivers.

63



64 Chapter 22 Windows XP

(2) The kernel layer provides a foundation for the executive functions
and user-mode subsystems. The kernel remains in memory and is never
preempted. Its responsibilities are thread scheduling, interrupt and
exception handling, low-level processor synchronization, and power
failure recovery. (3) The executive layer provides a set of services used
by all subsystems: object manager, virtual memory manager, process
manager, local procedure call facility, I/O manager, security monitor,
plug-and-play manager, registry, and booting.

22.5 Objects present a generic set of kernel mode interfaces to user-mode
programs. Objects are manipulated by the executive-layer object man-
ager. The job of the object manager is to supervise the allocation and
use of all managed objects.

22.6 The process manager provides services for creating, deleting, and us-
ing processes, threads and jobs. The process manager also implements
queuing and delivery of asynchronous procedure calls to threads. The
local procedure call (LPC) is a message-passing system. The operat-
ing system uses the LPC to pass requests and results between client
and server processes within a single machine, in particular between
Windows XP subsystems.

22.7 The I/O manager is responsible for file systems, device drivers, and
network drivers. The I/O manager keeps track of which device drivers,
filter drivers, and file systems are loaded and manages buffers for I/O

requests. It furthermore assists in providing memory-mapped file I/O

and controls the cache manager for the whole I/O system.

22.8 Environmental subsystems are user-mode processes layered over the
native executable services to enable Windows XP to run programs de-
veloped for other operating systems. (1) A Win32 application called
the virtual DOS machine (VDM) is provided as a user-mode process to
run MS-DOS applications. The VDM can execute or emulate Intel 486 in-
structions and also provides routines to emulate MS-DOS BIOS services
and provides virtual drivers for screen, keyboard, and communication
ports. (2) Windows-on-windows (WOW32) provides kernel and stub
routines for Windows 3.1 functions. The stub routines call the appro-
priate Win32 subroutines, converting the 16-bit addresses into 32-bit
addresses.

22.9 Support is provided for both peer-to-peer and client-server networking.
Transport protocols are implemented as drivers. (1) The TCP/IP package
includes SNMP, DHCP, WINS, and NetBIOS support. (2) Point-to-point
tunneling protocol is provided to communicate between remote-access
modules running on Windows XP servers and other client systems
connected over the internet. Using this scheme, multi-protocol virtual
private networks (VPNs) are supported over the internet.

22.10 The NTFS namespace is organized as a hierarchy of directories where
each directory uses a B+ tree data structure to store an index of the file
names in that directory. The index root of a directory contains the top
level of the B+ tree. Each entry in the directory contains the name and
file reference of the file as well as the update timestamp and file size.



Practice Exercises 65

22.11 In NTFS, all file-system data structure updates are performed inside
transactions. Before a data structure is altered, the transaction writes
a log record containing redo and undo information. A commit record
is written to the log after a transaction has succeeded. After a crash
the file system can be restored to a consistent state by processing the
log records, first redoing operations for committed transactions and
undoing operations for transactions that did not successfully commit.
This scheme does not guarantee that user file contents are correct after
a recovery, but rather that the file-system data structures (file metadata)
are undamaged and reflect some consistent state that existed before the
crash.

22.12 User memory can be allocated according to several schemes: virtual
memory, memory-mapped files, heaps, and thread-local storage.

22.13 (1) Virtual memory provides several functions that allow an application
to reserve and release memory, specifying the virtual address at which
the memory is allocated. (2) A file may be memory-mapped into address
space, providing a means for two processes to share memory. (3) When
a Win32 process is initialized, it is created with a default heap. Private
heaps can be created that provide regions of reserved address space for
applications. Thread management functions are provided to allocate
and control thread access to private heaps. (4) A thread-local storage
mechanism provides a way for global and static data to work properly
in a multithreaded environment. Thread-lock storage allocates global
storage on a per-thread basis.





23C H A P T E RInfluential
Operating
Systems

No Practice Exercises

67




