Problem
You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1…n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: “What would be the k-th number in a[i…j] segment, if this segment was sorted?”
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2…5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
Sample Input
|
|
Sample Output
|
|
Solution
之前使用過塊狀鏈表、歸併樹來完成這一題,其中速度快 歸併樹 > 函數式線段樹 > 塊狀鏈表,空間消耗大小 函數式線段樹 > 歸併樹 > 塊狀鏈表。
現在學到了一種可持久化的數據精神,有一種為函數式線段樹,最簡單理解的就是採用修改不改值,而是增加新的節點,而每一次修改最多增加 O(n log n)
(延著線段樹走訪路徑增加節點)
也就是說,每一次修改會根據前一次的 root 增加一個新的 root’,這是一個相當重要的一環,每一次修改會產生新的一棵線段樹,而這個新線段樹大部分節點會使用前一個線段樹的節點,因此只要針對走訪不影響的情況下,我們仍然會經過舊有的節點。
為了找到區間 K 大,使用函數式線段樹有點類似於掃描線算法,對於某個時間點依序將數字放進去,然後對於區間查詢 K 大的時候,相當於對某個時間點之間作減法運算。
|
|