#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <string.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <iostream>
#include <map>
#include <complex>
#include <cmath>
using namespace std;
#define for if (0); else for
using namespace std;
const int MaxFastBits = 16;
int **gFFTBitTable = 0;
int NumberOfBitsNeeded(int PowerOfTwo) {
for (int i = 0;; ++i) {
if (PowerOfTwo & (1 << i)) {
return i;
}
}
}
int ReverseBits(int index, int NumBits) {
int ret = 0;
for (int i = 0; i < NumBits; ++i, index >>= 1) {
ret = (ret << 1) | (index & 1);
}
return ret;
}
void InitFFT() {
gFFTBitTable = new int *[MaxFastBits];
for (int i = 1, length = 2; i <= MaxFastBits; ++i, length <<= 1) {
gFFTBitTable[i - 1] = new int[length];
for (int j = 0; j < length; ++j) {
gFFTBitTable[i - 1][j] = ReverseBits(j, i);
}
}
}
inline int FastReverseBits(int i, int NumBits) {
return NumBits <= MaxFastBits ? gFFTBitTable[NumBits - 1][i] : ReverseBits(i, NumBits);
}
void FFT(bool InverseTransform, vector<complex<double> >& In, vector<complex<double> >& Out) {
if (!gFFTBitTable) { InitFFT(); }
int NumSamples = In.size();
int NumBits = NumberOfBitsNeeded(NumSamples);
for (int i = 0; i < NumSamples; ++i) {
Out[FastReverseBits(i, NumBits)] = In[i];
}
double angle_numerator = acos(-1.) * (InverseTransform ? -2 : 2);
for (int BlockEnd = 1, BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
double delta_angle = angle_numerator / BlockSize;
double sin1 = sin(-delta_angle);
double cos1 = cos(-delta_angle);
double sin2 = sin(-delta_angle * 2);
double cos2 = cos(-delta_angle * 2);
for (int i = 0; i < NumSamples; i += BlockSize) {
complex<double> a1(cos1, sin1), a2(cos2, sin2);
for (int j = i, n = 0; n < BlockEnd; ++j, ++n) {
complex<double> a0(2 * cos1 * a1.real() - a2.real(), 2 * cos1 * a1.imag() - a2.imag());
a2 = a1;
a1 = a0;
complex<double> a = a0 * Out[j + BlockEnd];
Out[j + BlockEnd] = Out[j] - a;
Out[j] += a;
}
}
BlockEnd = BlockSize;
}
if (InverseTransform) {
for (int i = 0; i < NumSamples; ++i) {
Out[i] /= NumSamples;
}
}
}
vector<double> convolution(vector<double> a, vector<double> b) {
int n = a.size();
vector<complex<double> > s(n), d1(n), d2(n), y(n);
for (int i = 0; i < n; ++i) {
s[i] = complex<double>(a[i], 0);
}
FFT(false, s, d1);
s[0] = complex<double>(b[0], 0);
for (int i = 1; i < n; ++i) {
s[i] = complex<double>(b[n - i], 0);
}
FFT(false, s, d2);
for (int i = 0; i < n; ++i) {
y[i] = d1[i] * d2[i];
}
FFT(true, y, s);
vector<double> ret(n);
for (int i = 0; i < n; ++i) {
ret[i] = s[i].real();
}
return ret;
}
struct Polynomial {
vector<double> v;
Polynomial operator*(const Polynomial &other) const {
int n = (int) max(v.size(), other.v.size()) * 2, m;
for (m = 2; m < n; m <<= 1);
vector<double> na, nb;
na.resize(m, 0), nb.resize(m, 0);
for (int i = 0; i < v.size(); i++)
na[i] = v[i];
for (int i = 0, j = m - 1; i < other.v.size(); i++, j--)
nb[j] = other.v[i];
Polynomial ret;
ret.v = convolution(na, nb);
for (int i = 1; i < ret.v.size(); i++)
ret.v[i - 1] = ret.v[i];
ret.v[ret.v.size() - 1] = 0;
return ret;
}
};
char sa[1<<18], sb[1<<18];
long long ret[1<<19];
int main() {
while (scanf("%s %s", sa, sb) == 2) {
Polynomial a, b, c;
for (int i = (int)strlen(sa) - 1; i >= 0; i--)
a.v.push_back(sa[i] - '0');
for (int i = (int)strlen(sb) - 1; i >= 0; i--)
b.v.push_back(sb[i] - '0');
c = a * b;
memset(ret, 0, sizeof(ret));
int f = 0;
double eps = 1.5e-1;
for (int i = 0; i < c.v.size(); i++)
ret[i] = (long long) (c.v[i] + eps);
int n = (int)c.v.size();
for (int i = 0; i < n; i++) {
if (ret[i] >= 10) {
ret[i + 1] += ret[i]/10;
ret[i] %= 10;
}
}
for (int i = n; i >= 0; i--) {
if (ret[i])
f = 1;
if (f)
printf("%lld", ret[i]);
}
if (!f)
printf("0");
puts("");
}
return 0;
}