#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <limits.h>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
#define MILLER_BABIN 10
typedef unsigned long long UINT64;
#define UNSTABLE_FAST
UINT64 mul(UINT64 a, UINT64 b, UINT64 mod) {
#ifdef UNSTABLE_FAST
return (a*b - (long long)(a/(long double)mod*b+1e-3)*mod+mod)%mod;
#endif
UINT64 ret = 0;
for (a = a >= mod ? a%mod : a, b = b >= mod ? b%mod : b; b != 0; b>>=1, a <<= 1, a = a >= mod ? a - mod : a) {
if (b&1) {
ret += a;
if (ret >= mod)
ret -= mod;
}
}
return ret;
}
struct Matrix {
UINT64 v[2][2];
int row, col;
Matrix(int n, int m, int a = 0) {
memset(v, 0, sizeof(v));
row = n, col = m;
for(int i = 0; i < row && i < col; i++)
v[i][i] = a;
}
Matrix multiply(const Matrix& x, const long long mod) const {
Matrix ret(row, x.col);
for(int i = 0; i < row; i++) {
for(int k = 0; k < col; k++) {
if (!v[i][k])
continue;
for(int j = 0; j < x.col; j++) {
ret.v[i][j] += mul(v[i][k], x.v[k][j], mod);
if (ret.v[i][j] >= mod)
ret.v[i][j] -= mod;
}
}
}
return ret;
}
Matrix pow(const long long& n, const long long mod) const {
Matrix ret(row, col, 1), x = *this;
long long y = n;
while(y) {
if(y&1) ret = ret.multiply(x, mod);
y = y>>1, x = x.multiply(x, mod);
}
return ret;
}
} FibA(2, 2, 0);
#define MAXL (50000>>5)+1
#define GET(x) (mark[x>>5]>>(x&31)&1)
#define SET(x) (mark[x>>5] |= 1<<(x&31))
int mark[MAXL], P[50000], Pt = 0;
void sieve() {
register int i, j, k;
SET(1);
int n = 46340;
for (i = 2; i <= n; i++) {
if (!GET(i)) {
for (k = n/i, j = i*k; k >= i; k--, j -= i)
SET(j);
P[Pt++] = i;
}
}
}
UINT64 mpow(UINT64 x, UINT64 y, UINT64 mod) {
UINT64 ret = 1;
while (y) {
if (y&1)
ret = (ret * x)%mod;
y >>= 1, x = (x * x)%mod;
}
return ret % mod;
}
UINT64 mpow2(UINT64 x, UINT64 y, UINT64 mod) {
UINT64 ret = 1;
while (y) {
if (y&1)
ret = mul(ret, x, mod);
y >>= 1, x = mul(x, x, mod);
}
return ret;
}
void exgcd(long long x, long long y, long long &g, long long &a, long long &b) {
if (y == 0)
g = x, a = 1, b = 0;
else
exgcd(y, x%y, g, b, a), b -= (x/y) * a;
}
long long llgcd(long long x, long long y) {
if (x < 0) x = -x;
if (y < 0) y = -y;
if (!x || !y) return x + y;
long long t;
while (x%y)
t = x, x = y, y = t%y;
return y;
}
long long inverse(long long x, long long p) {
long long g, b, r;
exgcd(x, p, g, r, b);
if (g < 0) r = -r;
return (r%p + p)%p;
}
int isPrime(long long p) {
if (p < 2 || !(p&1)) return 0;
if (p == 2) return 1;
long long q = p-1, a, t;
int k = 0, b = 0;
while (!(q&1)) q >>= 1, k++;
for (int it = 0; it < MILLER_BABIN; it++) {
a = rand()%(p-4) + 2;
t = mpow2(a, q, p);
b = (t == 1) || (t == p-1);
for (int i = 1; i < k && !b; i++) {
t = mul(t, t, p);
if (t == p-1)
b = 1;
}
if (b == 0)
return 0;
}
return 1;
}
long long pollard_rho(long long n, long long c) {
long long x = 2, y = 2, i = 1, k = 2, d;
while (true) {
x = (mul(x, x, n) + c);
if (x >= n) x -= n;
d = llgcd(x - y, n);
if (d > 1) return d;
if (++i == k) y = x, k <<= 1;
}
return n;
}
void factorize(int n, vector<long long> &f) {
for (int i = 0; i < Pt && P[i]*P[i] <= n; i++) {
if (n%P[i] == 0) {
while (n%P[i] == 0)
f.push_back(P[i]), n /= P[i];
}
}
if (n != 1) f.push_back(n);
}
void llfactorize(long long n, vector<long long> &f) {
if (n == 1)
return ;
if (n < 1e+9) {
factorize(n, f);
return ;
}
if (isPrime(n)) {
f.push_back(n);
return ;
}
long long d = n;
for (int i = 2; d == n; i++)
d = pollard_rho(n, i);
llfactorize(d, f);
llfactorize(n/d, f);
}
int legendre_symbol(UINT64 d, UINT64 p) {
if (d%p == 0) return 0;
return mpow2(d, (p-1)>>1, p) == 1 ? 1 : -1;
}
void factor_gen(int idx, long long x, vector< pair<long long, int> > &f, vector<long long> &ret) {
if (idx == f.size()) {
ret.push_back(x);
return ;
}
for (long long i = 0, a = 1; i <= f[idx].second; i++, a *= f[idx].first)
factor_gen(idx+1, x*a, f, ret);
}
void factor_gen(long long n, vector<long long> &ret) {
vector<long long> f;
vector< pair<long long, int> > f2;
llfactorize(n, f);
sort(f.begin(), f.end());
int cnt = 1;
for (int i = 1; i <= f.size(); i++) {
if (i == f.size() || f[i] != f[i-1])
f2.push_back(make_pair(f[i-1], cnt)), cnt = 1;
else
cnt ++;
}
factor_gen(0, 1, f2, ret);
sort(ret.begin(), ret.end());
}
UINT64 cycleInFib(UINT64 p) {
if (p == 2) return 3;
if (p == 3) return 8;
if (p == 5) return 20;
vector<long long> f;
if (legendre_symbol(5, p) == 1)
factor_gen(p-1, f);
else
factor_gen(2*(p+1), f);
long long f1, f2;
for (int i = 0; i < f.size(); i++) {
Matrix t = FibA.pow(f[i]-1, p);
f1 = (t.v[0][0] + t.v[0][1])%p;
f2 = (t.v[1][0] + t.v[1][1])%p;
if (f1 == 1 && f2 == 0)
return f[i];
}
return 0;
}
UINT64 cycleInFib(UINT64 p, int k) {
UINT64 s = cycleInFib(p);
for (int i = 1; i < k; i++)
s = s * p;
return s;
}
int main() {
sieve();
FibA.v[0][0] = 1, FibA.v[0][1] = 1;
FibA.v[1][0] = 1, FibA.v[1][1] = 0;
int K, testcase;
UINT64 C[20] = {1, 60, 300, 1500, 15000, 150000, 1500000, 15000000, 150000000, 1500000000, 15000000000, 150000000000, 1500000000000, 15000000000000, 150000000000000, 1500000000000000, 15000000000000000, 150000000000000000, 1500000000000000000};
UINT64 M[20];
scanf("%d %d", &K, &testcase);
for (int i = 1; i <= K; i++) {
long long m = mpow2(10, i, LONG_LONG_MAX);
M[i] = m;
}
while (testcase--) {
char s[32];
scanf("%s", s);
long long fib;
vector<UINT64> pos;
sscanf(s, "%lld", &fib);
if (fib == 0) {
puts("1");
continue;
}
sscanf(s+K-1, "%lld", &fib);
for (int i = 0; i < C[1]; i++) {
Matrix t = FibA.pow(i, 10);
long long fn = t.v[1][0];
if (fn == fib)
pos.push_back(i);
}
for (int i = 2; i <= K; i++) {
sscanf(s+K-i, "%lld", &fib);
vector<UINT64> next;
for (auto &x : pos) {
Matrix t = FibA.pow(x, M[i]), tp = FibA.pow(C[i-1], M[i]);
for (UINT64 c = x; c <= C[i]; c += C[i-1]) {
long long fn = t.v[1][0];
if (fn == fib)
next.push_back(c);
t = t.multiply(tp, M[i]);
}
}
sort(next.begin(), next.end());
next.resize(unique(next.begin(), next.end()) - next.begin());
pos = next;
}
if (pos.size() == 0)
puts("You've slept foolish!");
else
printf("%llu\n", pos[0]+1);
}
return 0;
}