批改娘 10102. Matrix Calculator (CUDA)

題目描述

小明的數學作業要計算方陣,現在請你幫幫他!

題目給定數個 $N \times N$ 的矩陣和 $2$ 小題。

  • $X = AB+CD$
  • $Y = ABE+CDF$

sequence.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <stdio.h>
#include <stdint.h>
// #define DEBUG
#define UINT uint32_t
#define MAXN 1024
void multiply(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
UINT sum = 0; // overflow, let it go.
for (int k = 0; k < N; k++)
sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
}
}
void add(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
C[i][j] = A[i][j] + B[i][j];
}
}
void rand_gen(UINT c, int N, UINT A[][MAXN]) {
UINT x = 2, n = N*N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
A[i][j] = x;
}
}
}
void print_matrix(int N, UINT A[][MAXN]) {
for (int i = 0; i < N; i++) {
fprintf(stderr, "[");
for (int j = 0; j < N; j++)
fprintf(stderr, " %u", A[i][j]);
fprintf(stderr, " ]\n");
}
}
UINT signature(int N, UINT A[][MAXN]) {
UINT h = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
h = (h + A[i][j]) * 2654435761LU;
}
return h;
}
UINT IN[6][MAXN][MAXN], TMP[6][MAXN][MAXN];
int main() {
int N, S[6];
scanf("%d", &N);
for (int i = 0; i < 6; i++) {
scanf("%d", &S[i]);
rand_gen(S[i], N, IN[i]);
}
// AB
multiply(N, IN[0], IN[1], TMP[0]);
// CD
multiply(N, IN[2], IN[3], TMP[1]);
// AB+CD
add(N, TMP[0], TMP[1], TMP[2]);
printf("%u\n", signature(N, TMP[2]));
// ABE
multiply(N, TMP[0], IN[4], TMP[3]);
// CDF
multiply(N, TMP[1], IN[5], TMP[4]);
// ABE+CDF
add(N, TMP[3], TMP[4], TMP[5]);
printf("%u\n", signature(N, TMP[5]));
return 0;
}

輸入格式

測資只有一組,第一行會有一個整數 $N$,表示題目給定 $N \times N$ 矩陣,第二行上會有 $6$ 個整數,分別為矩陣 $A, B, C, D, E, F$ 的生成種子。

  • $1 \le N \le 1024$
  • $0 \le S_i \le 2^{31}$

輸出格式

輸出兩行 $X$ 和 $Y$ 的雜湊值,可參考 sequence.c 的流程。

範例輸入 1

1
2
2
0 1 2 3 4 5
$$A = \begin{bmatrix} 0 & 1\\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3\\ 3 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & 3\\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 3 & 1\\ 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 0 & 1\\ 2 & 2 \end{bmatrix}, F = \begin{bmatrix} 1 & 3\\ 3 & 0 \end{bmatrix}$$ $$AB = \begin{bmatrix} 3 & 0\\ 8 & 6 \end{bmatrix}, CD = \begin{bmatrix} 9 & 8\\ 0 & 0 \end{bmatrix}, AB+CD = \begin{bmatrix} 12 & 8\\ 8 & 6 \end{bmatrix}\\ ABE = \begin{bmatrix} 0 & 3\\ 12 & 20 \end{bmatrix}, CDF = \begin{bmatrix} 33 & 27\\ 0 & 0 \end{bmatrix}, ABE+CDF = \begin{bmatrix} 33 & 30\\ 12 & 20 \end{bmatrix}$$

範例輸出 1

1
2
2385860290
1374821695

範例輸入 2

1
2
10
0 1 2 3 4 5

範例輸出 2

1
2
617438354
1897844131

編譯參數

1
$ nvcc -Xcompiler "-O2 -fopenmp" main.cu -o main

Solution

為了加快計算,一個 block 最多有 1024 個 thread 運行,因為牽涉到 warp scheduling/size,又要充分利用每一個 core 的計算能力,根據實驗結果 block size 盡可能大,且又不超過 register 個數為佳,這時候效能就會是最好的。這一點與 OpenCL 不同,當 OpenCL 偵測到填入的 block size 為 NULL 時,他會自動調整到最好的大小,而在 CUDA 就要使用者自己設定才行,這導致有些人反而不會去管大小。

根據上述所講,當然直接貪心找最大值填入即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <cuda.h>
#define MAXN 1024
#define GPULOCAL 64
#define UNLOOP 8
#define CheckErr(status) { gpuAssert((status), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, int abort=true) {
if (code != cudaSuccess) {
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
uint32_t hostMtx[6][MAXN*MAXN];
uint32_t hostMid[2][MAXN*MAXN];
int N = MAXN, M;
__global__ void matrixMul(uint32_t A[], uint32_t B[], uint32_t C[], int N) {
int r = blockIdx.x * blockDim.x + threadIdx.x;
int x = r / N, y = r % N;
uint32_t sum = 0;
for (int i = 0; i < N; i++)
sum += A[x*N + i] * B[i*N + y];
C[x * N + y] = sum;
}
__global__ void matrixAdd(uint32_t A[], uint32_t B[], uint32_t C[]) {
int r = blockIdx.x * blockDim.x + threadIdx.x;
C[r] = A[r] + B[r];
}
void readIn() {
uint32_t S[64];
assert(scanf("%d", &N) == 1);
M = 6;
for (int i = 0; i < M; i++)
assert(scanf("%d", &S[i]) == 1);
#pragma omp parallel for
for (int p = 0; p < M; p++) {
uint32_t x = 2, n = N*N, c = S[p];
x = 2;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
hostMtx[p][i*N+j] = x;
}
}
}
}
uint32_t writeOut(uint32_t *hostC) {
uint32_t h = 0;
uint32_t *Cend = hostC + N*N, *C = hostC;
for (; C != Cend; C++)
h = (h + *C) * 2654435761LU;
return h;
}
void matrix_multiply(uint32_t *cuMtxA, uint32_t *cuMtxB, uint32_t *cuMtxC) {
int localSz = 1;
for (int i = 1; i <= 1024; i++) {
if (N*N % i == 0)
localSz = i;
}
dim3 cuBlock(localSz);
dim3 cuGrid(N*N/localSz);
matrixMul<<<cuGrid, cuBlock>>>(cuMtxA, cuMtxB, cuMtxC, N);
CheckErr(cudaGetLastError());
}
void matrix_add(uint32_t *cuMtxA, uint32_t *cuMtxB, uint32_t *cuMtxC) {
int localSz = 1;
for (int i = 1; i <= 1024; i++) {
if (N*N % i == 0)
localSz = i;
}
dim3 cuBlock(localSz);
dim3 cuGrid(N*N/localSz);
matrixAdd<<<cuGrid, cuBlock>>>(cuMtxA, cuMtxB, cuMtxC);
CheckErr(cudaGetLastError());
}
int main(int argc, char *argv[]) {
readIn();
uint32_t *cuMtx[6], *cuMtxTmp[6];
uint32_t memSz = N*N*sizeof(uint32_t);
for (int i = 0; i < 6; i++) {
cudaMalloc((void **) &cuMtx[i], memSz);
cudaMemcpy(cuMtx[i], hostMtx[i], memSz, cudaMemcpyHostToDevice);
CheckErr(cudaGetLastError());
}
for (int i = 0; i < 6; i++)
cudaMalloc((void **) &cuMtxTmp[i], memSz);
// cuMtxTmp[0] = AB
matrix_multiply(cuMtx[0], cuMtx[1], cuMtxTmp[0]);
// cuMtxTmp[1] = CD
matrix_multiply(cuMtx[2], cuMtx[3], cuMtxTmp[1]);
// cuMtxTmp[2] = ABE
matrix_multiply(cuMtxTmp[0], cuMtx[4], cuMtxTmp[2]);
// cuMtxTmp[3] = CDF
matrix_multiply(cuMtxTmp[1], cuMtx[5], cuMtxTmp[3]);
// cuMtxTmp[4] = AB + CD
matrix_add(cuMtxTmp[0], cuMtxTmp[1], cuMtxTmp[4]);
// cuMtxTmp[5] = ABE+CDF
matrix_add(cuMtxTmp[2], cuMtxTmp[3], cuMtxTmp[5]);
cudaMemcpy(hostMid[0], cuMtxTmp[4], memSz, cudaMemcpyDeviceToHost);
cudaMemcpy(hostMid[1], cuMtxTmp[5], memSz, cudaMemcpyDeviceToHost);
uint32_t ret[2];
#pragma omp parallel for
for (int i = 0; i < 2; i++) {
ret[i] = writeOut(hostMid[i]);
}
for (int i = 0; i < 2; i++)
printf("%u\n", ret[i]);
for (int i = 0; i < 6; i++)
cudaFree(cuMtx[i]);
for (int i = 0; i < 6; i++)
cudaFree(cuMtxTmp[i]);
return 0;
}
Read More +

批改娘 10101. Fast Game of Life (CUDA)

題目描述

生命遊戲中,對於任意細胞,規則如下:
每個細胞有兩種狀態-存活或死亡,每個細胞與以自身為中心的周圍八格細胞產生互動。

  • 當前細胞為存活狀態時,當周圍低於 2 個 (不包含 2 個) 存活細胞時,該細胞變成死亡狀態。
  • 當前細胞為存活狀態時,當周圍有 2 個或 3 個存活細胞時, 該細胞保持原樣。
  • 當前細胞為存活狀態時,當周圍有 3 個以上的存活細胞時,該細胞變成死亡狀態。
  • 當前細胞為死亡狀態時,當周圍有 3 個存活細胞時,該細胞變成存活狀態。

可以把最初的細胞結構定義為種子,當所有在種子中的細胞同時被以上規則處理後,可以得到第一代細胞圖。按規則繼續處理當前的細胞圖,可以得到下一代的細胞圖,周而復始。

輸入格式

輸入第一行有兩個整數 $N$, $M$,表示盤面大小為 $N \times N$,模擬週期次數 $M$。接下來會有 $N$ 行,每一行上會有 $N$ 個字符,以 0 表示 $(i, j)$ 格子上的細胞屬於死亡狀態,反之 1 為存活狀態。

  • $1 \le N \le 2000$
  • $0 \le M \le 5000$

輸出格式

對於每一組測資輸出 $N$ 行,每一行上有 $N$ 個字元表示模擬 $M$ 次的最終盤面結果。

範例輸入 1

1
2
3
4
5
6
5 1
10001
00100
01110
00100
01010

範例輸出 1

1
2
3
4
5
00000
00100
01010
00000
00100

範例輸入 2

1
2
3
4
5
6
5 3
10001
00100
01110
00100
01010

範例輸出 2

1
2
3
4
5
00000
00000
01110
00000
00000

編譯參數

1
2
$ nvcc -Xcompiler "-O2 -fopenmp" main.cu -o main
$ ./main

Solution

CUDA 的函數分成 blocking 或者是 non-blocking,這是因為是異質計算在 host 上不一定要等到 GPU 算完才能執行下一行指令。kernel function call 是 non-blocking 的,可以藉由 cudaDeviceSynchronize 等待 device 所有的 task 都完成,才進行到下一個運行區塊。

但是別忘記 cudaMemcpy 和 kernel function call 這一類都類似 OpenCL 的 Command Queue,若沒有特別設定,原則上都是 in-order 處理 (相對於隨意順序,必須按照進入 queue 的順序執行),因此 memory copy 也是一條指令,cudaMemcpy 屬於 blocking 函數,在設計上就不一定要加上 cudaDeviceSynchronize

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <cuda.h>
#define GPULOCAL 1024
#define CheckErr(status) { gpuAssert((status), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, int abort=true) {
if (code != cudaSuccess) {
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
#define MAXN 2048
static int N, M, BN;
static char str[MAXN][MAXN] = {};
static char hostMtx[2][MAXN*MAXN] = {};
__global__ void simulate(char IN[], char OUT[], int N, int BN) {
int globalId = blockIdx.x * blockDim.x + threadIdx.x;
int x = globalId/N + 1, y = globalId%N + 1;
#define G(x, y) IN[(x) * BN + (y)]
char t = G(x, y);
char adj = G(x-1, y-1) + G(x-1, y) + G(x-1, y+1)
+ G(x, y-1) + G(x, y+1) + G(x+1, y-1) + G(x+1, y) + G(x+1, y+1);
OUT[x * BN + y] = (t == 0 && adj == 3) || (t == 1 && (adj == 2 || adj == 3));
#undef G
}
void runCuda() {
int cudaDeviceCnt = 0;
cudaGetDeviceCount(&cudaDeviceCnt);
if (cudaDeviceCnt == 0) {
printf("No supported GPU\n");
return ;
}
char *cuMtx[2];
int memSz = BN*BN*sizeof(char);
int localSz = 1;
for (int i = 1; i <= 1024; i++) {
if (N*N%i == 0)
localSz = i;
}
dim3 cuBlock(localSz);
dim3 cuGrid(N*N/localSz);
cudaMalloc((void **) &cuMtx[0], memSz);
cudaMalloc((void **) &cuMtx[1], memSz);
cudaMemcpy(cuMtx[0], hostMtx[0], memSz, cudaMemcpyHostToDevice);
cudaMemcpy(cuMtx[1], hostMtx[1], memSz, cudaMemcpyHostToDevice);
for (int i = 0; i < M; i++) {
simulate<<<cuGrid, cuBlock>>>(cuMtx[i%2], cuMtx[(i+1)%2], N, BN);
CheckErr(cudaGetLastError());
}
cudaDeviceSynchronize();
int f = M%2;
cudaMemcpy(hostMtx[f], cuMtx[f], memSz, cudaMemcpyDeviceToHost);
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++)
hostMtx[f][i*BN + j] += '0';
puts(hostMtx[f] + i*BN + 1);
}
}
int main() {
assert(scanf("%d %d", &N, &M) == 2);
while (getchar() != '\n');
for (int i = 1; i <= N; i++)
assert(fgets(str[i]+1, MAXN, stdin) != NULL);
BN = N+2;
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++)
hostMtx[0][i*BN + j] = str[i][j] - '0';
}
runCuda();
return 0;
}
Read More +

批改娘 10100. Fast Matrix Multiplication (CUDA)

題目描述

計算兩個大小為 $N \times N$ 方陣 $A, \; B$ 相乘結果 $C = A \times B$。為了節省輸入輸出時間,採用亂數產生,可以參考下述程式碼,並改寫成 CUDA 的版本進行加速。

sequence.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <stdio.h>
#include <stdint.h>
// #define DEBUG
#define UINT uint32_t
#define MAXN 1024
void multiply(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
UINT sum = 0; // overflow, let it go.
for (int k = 0; k < N; k++)
sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
}
}
void rand_gen(UINT c, int N, UINT A[][MAXN]) {
UINT x = 2, n = N*N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
A[i][j] = x;
}
}
}
void print_matrix(int N, UINT A[][MAXN]) {
for (int i = 0; i < N; i++) {
fprintf(stderr, "[");
for (int j = 0; j < N; j++)
fprintf(stderr, " %u", A[i][j]);
fprintf(stderr, " ]\n");
}
}
UINT signature(int N, UINT A[][MAXN]) {
UINT h = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
h = (h + A[i][j]) * 2654435761LU;
}
return h;
}
UINT A[MAXN][MAXN], B[MAXN][MAXN], C[MAXN][MAXN];
int main() {
int N;
uint32_t S1, S2;
scanf("%d %u %u", &N, &S1, &S2);
rand_gen(S1, N, A);
rand_gen(S2, N, B);
multiply(N, A, B, C);
#ifdef DEBUG
print_matrix(N, A);
print_matrix(N, B);
print_matrix(N, C);
#endif
printf("%u\n", signature(N, C));
return 0;
}

輸入格式

測資只有一組,包含三個整數 $N, S_1, S_2$,分別為方陣大小 $N \times N$,產生矩陣 $A$、$B$ 的亂數種子。

  • $64 \le N \le 1024$,保證 $N \mod 64 \equiv 0$
  • $0 \le S_1, \; S_2 < 2^{31}$

輸出格式

輸出一行雜湊值 $H$,可參考 sequence.c 的流程。

範例輸入

1
64 1 2

範例輸出

1
3376147904

編譯參數

1
$ nvcc -Xcompiler "-O2 -fopenmp" main.cu -o main

Solution

與 OpenCL 版本相比,是否乾淨許多呢?完全不用管到底 Context 和 Kerenl Program 如何建造,但是這一些方便性都是因為預設導致的結果。

CUDA 預設會在 device 0 上運作,也就是 PCI-E 順位上的第一個顯卡,若要更動藉由函數 cudaSetDevice(deviceId); 完成,而 OpenCL 的 CommandQueue 則對應到 CUDA 的 Stream,在稍後的題目中,我會提供些許的範例使用 CUDA 這些函數,協助設計的計算流程可以加快。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <cuda.h>
#define MAXN 1024
#define GPULOCAL 64
#define UNLOOP 8
#define CheckErr(status) { gpuAssert((status), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, int abort=true) {
if (code != cudaSuccess) {
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
uint32_t hostA[MAXN*MAXN], hostB[MAXN*MAXN], hostC[MAXN*MAXN];
int N = MAXN;
__global__ void matrixMul(uint32_t A[], uint32_t B[], uint32_t C[], int N) {
__shared__ uint32_t cbuf[MAXN+1];
uint32_t rbuf[MAXN];
int r = blockIdx.x * blockDim.x + threadIdx.x;
int localId = threadIdx.x;
int localSz = blockDim.x;
for (int i = 0; i < N; i++)
rbuf[i] = A[r * N + i];
for (int c = 0; c < N; c++) {
for (int cr = localId; cr < N; cr += localSz)
cbuf[cr] = B[cr * N + c];
__syncthreads();
uint32_t sum = 0;
for (int k = 0; k+UNLOOP-1 < N; k += UNLOOP) {
sum += rbuf[k+0] * cbuf[k+0];
sum += rbuf[k+1] * cbuf[k+1];
sum += rbuf[k+2] * cbuf[k+2];
sum += rbuf[k+3] * cbuf[k+3];
sum += rbuf[k+4] * cbuf[k+4];
sum += rbuf[k+5] * cbuf[k+5];
sum += rbuf[k+6] * cbuf[k+6];
sum += rbuf[k+7] * cbuf[k+7];
}
C[r * N + c] = sum;
}
}
void readIn() {
uint32_t c1, c2;
assert(scanf("%d %u %u", &N, &c1, &c2) == 3);
uint32_t x = 2, n = N*N;
x = 2;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c1 + i + j)&(n-1);
hostA[i*N+j] = x;
}
}
x = 2;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c2 + i + j)&(n-1);
hostB[i*N+j] = x;
}
}
}
void writeOut() {
uint32_t h = 0;
uint32_t *Cend = hostC + N*N, *C = hostC;
for (; C != Cend; C++)
h = (h + *C) * 2654435761LU;
printf("%u\n", h);
}
int main(int argc, char *argv[]) {
readIn();
uint32_t *cuMtxC, *cuMtxA, *cuMtxB;
cudaMalloc((void **) &cuMtxC, N*N*sizeof(uint32_t));
cudaMalloc((void **) &cuMtxA, N*N*sizeof(uint32_t));
cudaMalloc((void **) &cuMtxB, N*N*sizeof(uint32_t));
cudaMemcpy(cuMtxA, hostA, sizeof(uint32_t)*N*N, cudaMemcpyHostToDevice);
cudaMemcpy(cuMtxB, hostB, sizeof(uint32_t)*N*N, cudaMemcpyHostToDevice);
CheckErr(cudaGetLastError());
dim3 cuBlock(GPULOCAL);
dim3 cuGrid(N/GPULOCAL);
matrixMul<<<cuGrid, cuBlock>>>(cuMtxA, cuMtxB, cuMtxC, N);
CheckErr(cudaGetLastError());
cudaMemcpy(hostC, cuMtxC, sizeof(uint32_t)*N*N, cudaMemcpyDeviceToHost);
CheckErr(cudaGetLastError());
writeOut();
cudaFree(cuMtxC);
return 0;
}
Read More +

批改娘 10099. Dot Product (CUDA)

題目描述

請用 CUDA 改寫下段的計算:

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <stdio.h>
#include <assert.h>
#include <omp.h>
#include <inttypes.h>
#include <stdint.h>
#include "utils.h"
#define MAXGPU 8
#define MAXCODESZ 32767
#define MAXN 16777216
uint32_t A[MAXN], B[MAXN], C[MAXN];
int main(int argc, char *argv[]) {
omp_set_num_threads(4);
int N;
uint32_t key1, key2;
while (scanf("%d %" PRIu32 " %" PRIu32, &N, &key1, &key2) == 3) {
int chunk = N / 4;
for (int i = 0; i < N; i++) {
A[i] = encrypt(i, key1);
B[i] = encrypt(i, key2);
}
for (int i = 0; i < N; i++)
C[i] = A[i] * B[i];
uint32_t sum = 0;
for (int i = 0; i < N; i++)
sum += C[i];
printf("%" PRIu32 "\n", sum);
}
return 0;
}

utils.h

1
2
3
4
5
6
7
8
9
10
#ifndef _UTILS_H
#define _UTILS_H
#include <stdint.h>
static inline uint32_t rotate_left(uint32_t x, uint32_t n) {
return (x << n) | (x >> (32-n));
}
static inline uint32_t encrypt(uint32_t m, uint32_t key) {
return (rotate_left(m, key&31) + key)^key;
}
#endif

範例輸入

1
2
16777216 1 2
16777216 3 5

範例輸出

1
2
2885681152
2147483648

編譯參數

1
2
$ nvcc -Xcompiler "-O2 -fopenmp" main.cu -o main
$ ./main

Solution

這裡同我們在 OpenCL 的實作技巧,將生成測資和計算都丟在 GPU 上完成,但是 CUDA 只能在 Nvidia 顯卡上運作,而且根據版本的不同,每一種顯卡的計算能力也不同,可以參考 wiki,最低版本為 1.0,也就在編譯參數中加入 nvcc -arch=compute_10,如果可以到 2.0,下達 nvcc -arch=compute_20,以此類推。編譯器預設計算能力為 1.0,因此如果要在 kernel function 裡面印出訊息 (意即 printf()),至少提供 2.0 以上的編譯參數。

CUDA 程式撰寫就不用像 OpenCL 從找尋 Platform 到抓到 Device,之後再藉由 Device IDs 建立 Context,再從 Context 建立 Program,CUDA 提供 特殊語法,而不像 OpenCL 採用 特殊函數 包裝,這導致編程複雜度差異極大,但是從彈性來看 OpenCL 可以調控的項目較多且動態,但 CUDA 由於是自家產品,效能會稍微比同版本的 OpenCL 來得快,一部分也是因為編譯器不同導致的緣故。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <stdio.h>
#include <stdint.h>
#include <cuda.h>
#include <omp.h>
__device__ uint32_t rotate_left(uint32_t x, uint32_t n) {
return (x << n) | (x >> (32-n));
}
__device__ uint32_t encrypt(uint32_t m, uint32_t key) {
return (rotate_left(m, key&31) + key)^key;
}
__host__ uint32_t h_rotate_left(uint32_t x, uint32_t n) {
return (x << n) | (x >> (32-n));
}
__host__ uint32_t h_encrypt(uint32_t m, uint32_t key) {
return (h_rotate_left(m, key&31) + key)^key;
}
#define MAXN 16777216
#define GPULOCAL 128
#define BLOCKSZ (1024)
__global__ void vecdot(uint32_t keyA, uint32_t keyB, uint32_t C[], int N) {
int x = blockIdx.x * blockDim.x + threadIdx.x;
int l = x * BLOCKSZ;
int r = l + BLOCKSZ;
uint32_t sum = 0;
if (r > N) r = N;
for (int i = l; i < r; i++)
sum += encrypt(i, keyA) * encrypt(i, keyB);
C[x] = sum;
}
uint32_t hostC[MAXN / GPULOCAL];
#define CheckErr(status) { gpuAssert((status), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, int abort=true) {
if (code != cudaSuccess) {
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
int main() {
uint32_t N, keyA, keyB;
uint32_t *cuArrC;
cudaMalloc((void **)&cuArrC, MAXN/GPULOCAL*sizeof(uint32_t));
while (scanf("%u %u %u", &N, &keyA, &keyB) == 3) {
int M = (N + BLOCKSZ-1) / BLOCKSZ;
int LOCAL = GPULOCAL;
M = (M + LOCAL) / LOCAL * LOCAL;
dim3 cuBlock(LOCAL);
dim3 cuGrid(M/LOCAL);
vecdot<<<cuGrid, cuBlock>>>(keyA, keyB, cuArrC, N);
CheckErr(cudaGetLastError());
cudaMemcpy(hostC, cuArrC, M*sizeof(uint32_t), cudaMemcpyDeviceToHost);
uint32_t sum = 0;
#ifdef _OPENMP
omp_set_num_threads(4);
#endif
#pragma omp parallel for reduction(+: sum)
for (int i = 0; i < M; i++)
sum += hostC[i];
printf("%u\n", sum);
}
cudaFree(cuArrC);
return 0;
}
Read More +

批改娘 10098. Print Device Information (CUDA)

Problem

使用 CUDA 印出裝置訊息。請參考課程講義。

Sample Input

no input

Sample Output

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
3 devices found supporting CUDA
----------------------------------
Device GeForce GTX 980 Ti
----------------------------------
Device memory: 6442254336
Memory per-block: 49152
Register per-block: 65536
Warp size: 32
Memory pitch: 2147483647
Constant Memory: 65536
Max thread per-block: 1024
Max thread dim: 1024 / 1024 / 64
Max grid size: 2147483647 / 65535 / 65535
Ver: 5.2
Clock: 1190000
Texture Alignment: 512
----------------------------------
Device GeForce GTX 970
----------------------------------
Device memory: 4294770688
Memory per-block: 49152
Register per-block: 65536
Warp size: 32
Memory pitch: 2147483647
Constant Memory: 65536
Max thread per-block: 1024
Max thread dim: 1024 / 1024 / 64
Max grid size: 2147483647 / 65535 / 65535
Ver: 5.2
Clock: 1228000
Texture Alignment: 512
----------------------------------
Device GeForce GTX 770
----------------------------------
Device memory: 2147287040
Memory per-block: 49152
Register per-block: 65536
Warp size: 32
Memory pitch: 2147483647
Constant Memory: 65536
Max thread per-block: 1024
Max thread dim: 1024 / 1024 / 64
Max grid size: 2147483647 / 65535 / 65535
Ver: 3.0
Clock: 1137000
Texture Alignment: 512

編譯參數

1
2
$ nvcc hello.cu -o hello
$ ./hello

備註

請參考題解頁面的輸出格式。

Solution

以防萬一還是處理一下抓不到 device 的判斷,有時候因為驅動版本不對,抓不到 device 是很正常的。接下來就藉由 cudaDeviceProp 下的資訊全部打印。而在 %zu 則是處理型態 size_t 的輸出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <stdio.h>
#include <cuda.h>
const char splitLine[] = "----------------------------------";
void output(const cudaDeviceProp devInfo) {
puts(splitLine);
printf("Device %s\n", devInfo.name);
puts(splitLine);
printf(" Device memory: \t%zu\n", devInfo.totalGlobalMem);
printf(" Memory per-block: \t%zu\n", devInfo.sharedMemPerBlock);
printf(" Register per-block: \t%d\n", devInfo.regsPerBlock);
printf(" Warp size: \t\t%d\n", devInfo.warpSize);
printf(" Memory pitch: \t\t%zu\n", devInfo.memPitch);
printf(" Constant Memory: \t%zu\n", devInfo.totalConstMem);
printf(" Max thread per-block: \t%d\n", devInfo.maxThreadsPerBlock);
printf(" Max thread dim: \t%d / %d / %d\n",
devInfo.maxThreadsDim[0], devInfo.maxThreadsDim[1], devInfo.maxThreadsDim[2]);
printf(" Max grid size: \t%d / %d / %d\n",
devInfo.maxGridSize[0], devInfo.maxGridSize[1], devInfo.maxGridSize[2]);
printf(" Ver: \t\t\t%d.%d\n", devInfo.major, devInfo.minor);
printf(" Clock: \t\t%d\n", devInfo.clockRate);
printf(" Texture Alignment: \t%zu\n", devInfo.textureAlignment);
}
int main() {
int cudaDeviceCnt = 0;
cudaGetDeviceCount(&cudaDeviceCnt);
printf("%d devices found supporting CUDA\n", cudaDeviceCnt);
if (cudaDeviceCnt == 0) {
printf("No supported GPU\n");
return 0;
}
for (int i = 0; i < cudaDeviceCnt; i++) {
cudaDeviceProp devInfo;
cudaGetDeviceProperties(&devInfo, i);
output(devInfo);
}
return 0;
}
Read More +

批改娘 10105. Multiple Device (OpenCL)

題目描述

小明的數學作業要計算方陣,現在請你幫幫他!

題目給定數個 $N \times N$ 的矩陣和 $2$ 小題。

  • $X = AB+CD$
  • $Y = ABE+CDF$

輸入格式

多組測資,每組第一行會有一個整數 $N$,表示題目給定 $N \times N$ 矩陣,第二行上會有 $6$ 個整數,分別為矩陣 $A, B, C, D, E, F$ 的生成種子。

  • $1 \le N \le 1024$
  • $0 \le S_i \le 2^{31}$

輸出格式

輸出兩行 $X$ 和 $Y$ 的雜湊值,可參考 sequence.c 的流程。

Sample Input

1
2
3
4
2
0 1 2 3 4 5
10
0 1 2 3 4 5

Sample Output

1
2
3
4
2385860290
1374821695
617438354
1897844131

Solution

這一題要充分實作使用 real-time 分配工作到沒有運行的 GPU 上,利用在 OpenMP 學到的平行技巧,讓多個 thread 等待工作,一抓到工作立即運行。

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <CL/cl.h>
#include <omp.h>
#define MAXGPU 3
#define MAXN 1024
uint32_t hostMtx[MAXGPU][6][MAXN*MAXN];
uint32_t hostMid[MAXGPU][2][MAXN*MAXN];
char clSrcFormat[32767] = "";
char clSrc[32767] = "";
// -- start working with OpenCL
const int clNeedDevCnt = 3;
cl_context clCtx[MAXGPU];
cl_program clPrg[MAXGPU];
cl_kernel clKrnAdd[MAXGPU], clKrnMul[MAXGPU];
cl_command_queue clQue[MAXGPU];
cl_mem clMtx[MAXGPU][6], clMtxTmp[MAXGPU][6];
#define CheckFailAndExit(status) \
if (status != CL_SUCCESS) { \
fprintf(stderr, "Error %d: Line %u in file %s\n\n", status, __LINE__, __FILE__), \
destroyGPU(clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMtx, clMtxTmp); \
}
#define clFuncArgs cl_context clCtx[], cl_program clPrg[], cl_kernel clKrnAdd[], \
cl_kernel clKrnMul[], cl_command_queue clQue[], cl_mem clMtx[][6], cl_mem clMtxTmp[][6]
#define clCallFunc clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMtx, clMtxTmp
#define clCallFuncOuter clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMtx, clMtxTmp
uint32_t writeOut(uint32_t *hostC, int N) {
uint32_t h = 0;
uint32_t *Cend = hostC + N*N, *C = hostC;
for (; C != Cend; C++)
h = (h + *C) * 2654435761LU;
return h;
}
void destroyGPU(clFuncArgs) {
fprintf(stderr, "Starting Cleanup ...\n\n");
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < 6; j++) {
if (clMtx[i][j])
clReleaseMemObject(clMtx[i][j]);
if (clMtxTmp[i][j])
clReleaseMemObject(clMtxTmp[i][j]);
}
if (clKrnAdd[i])
clReleaseKernel(clKrnAdd[i]);
if (clKrnMul[i])
clReleaseKernel(clKrnMul[i]);
if (clPrg[i])
clReleaseProgram(clPrg[i]);
if (clQue[i])
clReleaseCommandQueue(clQue[i]);
if (clCtx[i])
clReleaseContext(clCtx[i]);
}
exit(0);
}
int initAllGPU(char fileName[], clFuncArgs) {
// -- generate kernel code
FILE *codefin = fopen(fileName, "r");
assert(codefin != NULL);
assert(fread(clSrcFormat, 1, 32767, codefin) < 32767);
sprintf(clSrc, clSrcFormat);
size_t clSrcLen = strlen(clSrc);
fclose(codefin);
cl_int clStat;
cl_uint clPlatN, clGPUN, clDevN;
cl_platform_id clPlatID;
cl_device_id clGPUID[MAXGPU];
const char *clSrcPtr = clSrc;
// -- basic OpenCL setup
clGetPlatformIDs(1, &clPlatID, &clPlatN);
clGetDeviceIDs(clPlatID, CL_DEVICE_TYPE_GPU, MAXGPU, clGPUID, &clDevN);
assert(clDevN >= clNeedDevCnt);
for (int i = 0; i < clNeedDevCnt; i++) {
clCtx[i] = clCreateContext(NULL, 1, clGPUID+i, NULL, NULL, &clStat);
CheckFailAndExit(clStat);
clQue[i] = clCreateCommandQueue(clCtx[i], clGPUID[i], 0, &clStat);
CheckFailAndExit(clStat);
clPrg[i] = clCreateProgramWithSource(clCtx[i], 1, &clSrcPtr, &clSrcLen, &clStat);
CheckFailAndExit(clStat);
clStat = clBuildProgram(clPrg[i], 1, clGPUID+i, NULL, NULL, NULL);
if (clStat != CL_SUCCESS) {
fprintf(stderr, "Error: Line %u in file %s\n\n", __LINE__, __FILE__);
size_t log_size;
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *program_log = (char *) calloc(log_size+1, sizeof(char));
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, log_size+1, program_log, NULL);
printf("%s", program_log);
free(program_log);
CheckFailAndExit(CL_BUILD_PROGRAM_FAILURE);
}
clKrnAdd[i] = clCreateKernel(clPrg[i], "matrixAdd", &clStat);
CheckFailAndExit(clStat);
clKrnMul[i] = clCreateKernel(clPrg[i], "matrixMul", &clStat);
CheckFailAndExit(clStat);
for (int j = 0; j < 6; j++) {
clMtx[i][j] = clCreateBuffer(clCtx[i], CL_MEM_READ_WRITE,
sizeof(uint32_t)*MAXN*MAXN, NULL, &clStat);
CheckFailAndExit(clStat);
clMtxTmp[i][j] = clCreateBuffer(clCtx[i], CL_MEM_READ_WRITE,
sizeof(uint32_t)*MAXN*MAXN, NULL, &clStat);
CheckFailAndExit(clStat);
}
}
return 1;
}
void matrix_mul(int N, int devIdx, cl_mem *LIN, cl_mem *RIN, cl_mem *OUT, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
size_t localSize[] = {0};
for (int i = 1; i <= N; i++) {
if (N%i == 0 && i*N <= 32768/2)
localSize[0] = i;
}
// -- set argument to kernel
clStat = clSetKernelArg(clKrnMul[devIdx], 0, sizeof(cl_mem), LIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 1, sizeof(cl_mem), RIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 2, sizeof(cl_mem), OUT);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 3, sizeof(cl_int), &N);
CheckFailAndExit(clStat);
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnMul[devIdx], 1, globalOffset,
globalSize, NULL, 0, NULL, NULL);
CheckFailAndExit(clStat);
}
void matrix_add(int N, int devIdx, cl_mem *LIN, cl_mem *RIN, cl_mem *OUT, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
// -- set argument to kernel
clStat = clSetKernelArg(clKrnAdd[devIdx], 0, sizeof(cl_mem), LIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[devIdx], 1, sizeof(cl_mem), RIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[devIdx], 2, sizeof(cl_mem), OUT);
CheckFailAndExit(clStat);
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnAdd[devIdx], 1, globalOffset,
globalSize, NULL, 0, NULL, NULL);
CheckFailAndExit(clStat);
}
int solver(int N, int devId, uint32_t ret[], clFuncArgs) {
uint32_t memSz = N*N*sizeof(uint32_t);
cl_int clStat;
for (int i = 0; i < 6; i++) {
clStat = clEnqueueWriteBuffer(clQue[devId],
clMtx[devId][i], 0, 0, memSz,
hostMtx[devId][i], 0, NULL, NULL);
CheckFailAndExit(clStat);
}
// cuMtxTmp[0] = AB
matrix_mul(N, devId, &clMtx[devId][0], &clMtx[devId][1], &clMtxTmp[devId][0], clCallFunc);
// cuMtxTmp[1] = CD
matrix_mul(N, devId, &clMtx[devId][2], &clMtx[devId][3], &clMtxTmp[devId][1], clCallFunc);
// cuMtxTmp[2] = ABE
matrix_mul(N, devId, &clMtxTmp[devId][0], &clMtx[devId][4], &clMtxTmp[devId][2], clCallFunc);
// cuMtxTmp[3] = CDF
matrix_mul(N, devId, &clMtxTmp[devId][1], &clMtx[devId][5], &clMtxTmp[devId][3], clCallFunc);
// cuMtxTmp[4] = AB + CD
matrix_add(N, devId, &clMtxTmp[devId][0], &clMtxTmp[devId][1], &clMtxTmp[devId][4], clCallFunc);
// cuMtxTmp[5] = ABE+CDF
matrix_add(N, devId, &clMtxTmp[devId][2], &clMtxTmp[devId][3], &clMtxTmp[devId][5], clCallFunc);
clStat = clEnqueueReadBuffer(clQue[devId], clMtxTmp[devId][4], CL_TRUE, 0,
sizeof(uint32_t)*N*N, hostMid[devId][0], 0, NULL, NULL);
CheckFailAndExit(clStat);
clStat = clEnqueueReadBuffer(clQue[devId], clMtxTmp[devId][5], CL_TRUE, 0,
sizeof(uint32_t)*N*N, hostMid[devId][1], 0, NULL, NULL);
CheckFailAndExit(clStat);
for (int i = 0; i < 2; i++)
#pragma omp task
{
ret[i] = writeOut(hostMid[devId][i], N);
}
#pragma omp taskwait
return 1;
}
int readIn(uint32_t S[], int *n, int devId) {
int N, M;
if (scanf("%d", &N) != 1)
return 0;
M = 6;
for (int i = 0; i < M; i++)
assert(scanf("%d", &S[i]) == 1);
for (int p = 0; p < M; p++)
#pragma omp task
{
uint32_t x = 2, n = N*N, c = S[p];
x = 2;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
hostMtx[devId][p][i*N+j] = x;
}
}
}
#pragma omp taskwait
*n = N;
return 1;
}
void onStart(clFuncArgs) {
initAllGPU("matrix-lib.cl", clCallFunc);
int inN = 0;
static uint32_t ansQue[32767][2];
#pragma omp parallel sections
{
#pragma omp section
{
while (1) {
int f = 0, N, pid = 0;
uint32_t S[32];
#pragma omp critical
{
f = readIn(S, &N, 0);
pid = inN;
inN += f;
}
if (f == 0)
break;
solver(N, 0, ansQue[pid], clCallFunc);
}
}
#pragma omp section
{
while (1) {
int f = 0, N, pid = 0;
uint32_t S[32];
#pragma omp critical
{
f = readIn(S, &N, 1);
pid = inN;
inN += f;
}
if (f == 0)
break;
solver(N, 1, ansQue[pid], clCallFunc);
}
}
#pragma omp section
{
while (1) {
int f = 0, N, pid = 0;
uint32_t S[32];
#pragma omp critical
{
f = readIn(S, &N, 2);
pid = inN;
inN += f;
}
if (f == 0)
break;
solver(N, 2, ansQue[pid], clCallFunc);
}
}
}
for (int i = 0; i < inN; i++)
printf("%u\n%u\n", ansQue[i][0], ansQue[i][1]);
destroyGPU(clCallFunc);
}
void sigHandler(int signo) {
printf("God Bless Me\n");
destroyGPU(clCallFuncOuter);
exit(0);
}
int main(int argc, char *argv[]) {
const char sigErr[] = "I can't catch signal.\n";
if (signal(SIGTRAP, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGSEGV, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGFPE, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGINT, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
onStart(clCallFuncOuter);
return 0;
}

matrix-lib.cl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#define CTYPE unsigned int
__kernel void matrixAdd(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
int x = get_global_id(0);
out[x] = in1[x] + in2[x];
}
__kernel void matrixMul(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out, int N) {
int id = get_global_id(0);
int x = id / N, y = id % N;
CTYPE sum = 0;
for (int i = 0; i < N; i++)
sum += in1[x*N + i] * in2[i*N + y];
out[x * N + y] = sum;
}
Read More +

批改娘 10097. Advanced Matrix Calculator (OpenCL)

題目描述

小明的數學作業要計算方陣,現在請你幫幫他!

題目給定數個 $N \times N$ 的矩陣和 $Q$ 小題,每一小題只由加法和乘法構成。

sequence.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <stdio.h>
#include <stdint.h>
// #define DEBUG
#define UINT uint32_t
#define MAXN 1024
void multiply(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
UINT sum = 0; // overflow, let it go.
for (int k = 0; k < N; k++)
sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
}
}
void add(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
C[i][j] = A[i][j] + B[i][j];
}
}
void rand_gen(UINT c, int N, UINT A[][MAXN]) {
UINT x = 2, n = N*N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
A[i][j] = x;
}
}
}
void print_matrix(int N, UINT A[][MAXN]) {
for (int i = 0; i < N; i++) {
fprintf(stderr, "[");
for (int j = 0; j < N; j++)
fprintf(stderr, " %u", A[i][j]);
fprintf(stderr, " ]\n");
}
}
UINT signature(int N, UINT A[][MAXN]) {
UINT h = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
h = (h + A[i][j]) * 2654435761LU;
}
return h;
}
UINT IN[6][MAXN][MAXN], TMP[6][MAXN][MAXN];
int main() {
int N, S[6];
scanf("%d", &N);
for (int i = 0; i < 6; i++) {
scanf("%d", &S[i]);
rand_gen(S[i], N, IN[i]);
}
// AB
multiply(N, IN[0], IN[1], TMP[0]);
// CD
multiply(N, IN[2], IN[3], TMP[1]);
// AB+CD
add(N, TMP[0], TMP[1], TMP[2]);
printf("%u\n", signature(N, TMP[2]));
// ABE
multiply(N, TMP[0], IN[4], TMP[3]);
// CDF
multiply(N, TMP[1], IN[5], TMP[4]);
// ABE+CDF
add(N, TMP[3], TMP[4], TMP[5]);
printf("%u\n", signature(N, TMP[5]));
return 0;
}

輸入格式

測資只有一組,第一行會有兩個整數 $M,N$,表示題目給定 $M$ 個 $N \times N$ 矩陣,第二行上會有 $N$ 個整數 $S_i$ 個第 $i$ 個矩陣生成種子。最後會有一行一個整數 $Q$,表示接下來有 $Q$ 行詢問,每一行上會有一個字串 $E$ 表示接下來要處理的矩陣表達式,$E$ 只包含 A-Z 以及 +

  • $1 \le M \le 26$
  • $1 \le N \le 1024$
  • $0 \le S_i \le 2^{31}$
  • $1 \le Q \le 100$
  • $|E| \le 26$

輸出格式

對於每一組測資輸出一行。

範例輸入 1

1
2
3
4
5
6 2
0 1 2 3 4 5
2
AB+CD
ABE+CDF

範例輸出 1

1
2
2385860290
1374821695

編譯參數

1
2
$ gcc -std=c99 -O2 main.c -lm -lOpenCL -fopenmp
$ ./main

Solution

這一題是 10095. Matrix Calculator (OpenCL) 的強化版,針對計算量在多個 GPU 裝置上分配工作。由於每一個表達式的計算量多寡不定,為了批次解決一坨工作,讓三個 GPU 的執行時間最大值最小化,貪心分配表達式,將計算量由大排到小後,依序取出,挑選目前 workload 最小的 GPU 分配到這之上,但 GPU 計算能力不同 (例如頻率或傳輸效率 … 等),需要多乘上一個常數比較。

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <CL/cl.h>
#include <omp.h>
#define MAXGPU 3
#define MAXN 1024
#define MAXM 26
#define MAXMID 32
uint32_t hostMtx[MAXM][MAXN*MAXN];
int N, M, Q;
char expr[1024];
char clSrcFormat[32767] = "";
char clSrc[32767] = "";
// -- start working with OpenCL
const int clNeedDevCnt = 3;
cl_context clCtx[MAXGPU];
cl_program clPrg[MAXGPU];
cl_kernel clKrnAdd[MAXGPU], clKrnMul[MAXGPU];
cl_command_queue clQue[MAXGPU];
cl_mem clMemIn[MAXGPU][MAXM], clMemMid[MAXGPU][MAXMID];
typedef struct Node {
struct Node *l, *r;
int opcode;
uint32_t *hostV;
cl_mem clV;
cl_event event, *waitEvents;
int waitEventsN;
int pid, mid;
long long h;
} Node;
#define CheckFailAndExit(status) \
if (status != CL_SUCCESS) { \
fprintf(stderr, "Error %d: Line %u in file %s\n\n", status, __LINE__, __FILE__), \
destroyGPU(clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn); \
}
#define clFuncArgs cl_context clCtx[], cl_program clPrg[], cl_kernel clKrnAdd[], \
cl_kernel clKrnMul[], cl_command_queue clQue[], cl_mem clMemIn[][MAXM]
#define clCallFunc clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn
#define clCallFuncOuter clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn
void assignGPU(Node *u, int gpuIdx) {
if (u == NULL) return ;
if (u->l == NULL) {
u->hostV = hostMtx[u->mid];
u->clV = clMemIn[gpuIdx][u->mid];
return ;
}
assignGPU(u->l, gpuIdx);
assignGPU(u->r, gpuIdx);
}
Node* parseExpr(int l, int r, char expr[], int procId, clFuncArgs) {
cl_int clStat;
Node *u = (Node *) calloc(1, sizeof(Node));
u->pid = procId;
if (l == r) {
int idx = expr[l] - 'A';
u->hostV = hostMtx[idx];
u->mid = idx;
u->h = 0;
return u;
}
int cnt = 0;
for (int i = l; i <= r; i++) {
if (expr[i] == '(') {
cnt++;
} else if (expr[i] == ')') {
cnt--;
} else if (expr[i] == '+' && cnt == 0) {
u->l = parseExpr(l, i-1, expr, procId, clCallFunc);
u->r = parseExpr(i+1, r, expr, procId, clCallFunc);
u->opcode = '+';
u->h = u->l->h + u->r->h + N;
return u;
}
}
for (int i = l; i <= r; i++) {
if (expr[i] == '(') {
if (cnt == 0 && i != l) {
u->l = parseExpr(l, i-1, expr, procId, clCallFunc);
u->r = parseExpr(i, r, expr, procId, clCallFunc);
u->opcode = '*';
u->h = u->l->h + u->r->h + N*N;
return u;
}
cnt++;
} else if (expr[i] == ')') {
cnt--;
} else if (expr[i] >= 'A' && expr[i] <= 'Z' && cnt == 0 && i != l) {
u->l = parseExpr(l, i-1, expr, procId, clCallFunc);
u->r = parseExpr(i, r, expr, procId, clCallFunc);
u->opcode = '*';
u->h = u->l->h + u->r->h + N*N;
return u;
}
}
free(u);
return parseExpr(l+1, r-1, expr, procId, clCallFunc);
}
uint32_t writeMatrixOut(int N, uint32_t *A) {
uint32_t h = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
h = (h + A[i*N + j]) * 2654435761LU;
return h;
}
void destroyGPU(clFuncArgs) {
fprintf(stderr, "Starting Cleanup ...\n\n");
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < M; j++) {
if (clMemIn[i][j])
clReleaseMemObject(clMemIn[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < MAXMID; j++) {
if (clMemMid[i][j])
clReleaseMemObject(clMemMid[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clKrnAdd[i]) clReleaseKernel(clKrnAdd[i]);
if (clKrnMul[i]) clReleaseKernel(clKrnMul[i]);
if (clPrg[i]) clReleaseProgram(clPrg[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clQue[i])
clReleaseCommandQueue(clQue[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clCtx[i])
clReleaseContext(clCtx[i]);
}
exit(0);
}
int initAllGPU(char fileName[], clFuncArgs) {
// -- generate kernel code
FILE *codefin = fopen(fileName, "r");
assert(codefin != NULL);
assert(fread(clSrcFormat, 1, 32767, codefin) < 32767);
sprintf(clSrc, clSrcFormat, N);
size_t clSrcLen = strlen(clSrc);
fclose(codefin);
cl_int clStat;
cl_uint clPlatN, clGPUN, clDevN;
cl_platform_id clPlatID;
cl_device_id clGPUID[MAXGPU];
const char *clSrcPtr = clSrc;
// -- basic OpenCL setup
clGetPlatformIDs(1, &clPlatID, &clPlatN);
clGetDeviceIDs(clPlatID, CL_DEVICE_TYPE_GPU, MAXGPU, clGPUID, &clDevN);
assert(clDevN >= clNeedDevCnt);
for (int i = 0; i < clNeedDevCnt; i++) {
clCtx[i] = clCreateContext(NULL, 1, clGPUID+i, NULL, NULL, &clStat);
CheckFailAndExit(clStat);
}
for (int i = 0; i < clNeedDevCnt; i++) {
clQue[i] = clCreateCommandQueue(clCtx[i], clGPUID[i],
/*CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE*/ 0, &clStat);
CheckFailAndExit(clStat);
}
for (int i = 0; i < clNeedDevCnt; i++) {
clPrg[i] = clCreateProgramWithSource(clCtx[i], 1, &clSrcPtr, &clSrcLen, &clStat);
CheckFailAndExit(clStat);
clStat = clBuildProgram(clPrg[i], 1, clGPUID+i, NULL, NULL, NULL);
if (clStat != CL_SUCCESS) {
fprintf(stderr, "Error: Line %u in file %s\n\n", __LINE__, __FILE__);
size_t log_size;
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *program_log = (char *) calloc(log_size+1, sizeof(char));
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, log_size+1, program_log, NULL);
printf("%s", program_log);
free(program_log);
CheckFailAndExit(CL_BUILD_PROGRAM_FAILURE);
}
clKrnAdd[i] = clCreateKernel(clPrg[i], "matrixAdd", &clStat);
CheckFailAndExit(clStat);
clKrnMul[i] = clCreateKernel(clPrg[i], "matrixMul", &clStat);
CheckFailAndExit(clStat);
}
// -- create all buffers
cl_mem_flags clInBuffFlag = CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR;
for (int d = 0; d < clNeedDevCnt; d++) {
for (int i = 0; i < M; i++) {
clMemIn[d][i] = clCreateBuffer(clCtx[d], clInBuffFlag, sizeof(uint32_t)*N*N,
hostMtx[i], &clStat);
CheckFailAndExit(clStat);
}
}
for (int d = 0; d < clNeedDevCnt; d++) {
for (int i = 0; i < MAXMID; i++) {
clMemMid[d][i] = clCreateBuffer(clCtx[d], CL_MEM_READ_WRITE,
sizeof(uint32_t)*N*N, NULL, &clStat);
CheckFailAndExit(clStat);
}
}
return 1;
}
void GPUmultiply(int N, Node *U, Node *L, Node *R, int devIdx, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
size_t localSize[] = {0};
for (int i = 1; i <= 1024; i++) {
if (N*N%i == 0)
localSize[0] = i;
}
// -- set argument to kernel
clStat = clSetKernelArg(clKrnMul[devIdx], 0, sizeof(cl_mem), &(L->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 1, sizeof(cl_mem), &(R->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 2, sizeof(cl_mem), &(U->clV));
CheckFailAndExit(clStat);
// -- find wait events
int waitN = 0, waitCnt = 0;
if (L->event) waitCnt++;
if (R->event) waitCnt++;
cl_event *events = (cl_event*) malloc(sizeof(cl_event) * waitCnt);
if (L->event) events[waitN++] = L->event;
if (R->event) events[waitN++] = R->event;
U->waitEvents = events, U->waitEventsN = waitCnt;
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnMul[devIdx], 1, globalOffset,
globalSize, localSize, U->waitEventsN, U->waitEvents, &(U->event) );
CheckFailAndExit(clStat);
}
void GPUadd(int N, Node *U, Node *L, Node *R, int devIdx, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
size_t localSize[] = {0};
for (int i = 1; i <= 1024; i++) {
if (N*N%i == 0)
localSize[0] = i;
}
// -- set argument to kernel
clStat = clSetKernelArg(clKrnAdd[devIdx], 0, sizeof(cl_mem), &(L->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[devIdx], 1, sizeof(cl_mem), &(R->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[devIdx], 2, sizeof(cl_mem), &(U->clV));
CheckFailAndExit(clStat);
// -- find wait events
int waitN = 0, waitCnt = 0;
if (L->event) waitCnt++;
if (R->event) waitCnt++;
cl_event *events = (cl_event*) malloc(sizeof(cl_event) * waitCnt);
if (L->event) events[waitN++] = L->event;
if (R->event) events[waitN++] = R->event;
U->waitEvents = events, U->waitEventsN = waitCnt;
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnAdd[devIdx], 1, globalOffset,
globalSize, localSize, U->waitEventsN, U->waitEvents, &(U->event) );
CheckFailAndExit(clStat);
}
int executeGPU(Node *workQue[][128], int workQueSz[], uint32_t resultBuff[], clFuncArgs) {
cl_int clStat;
Node* nodes[MAXGPU][128];
int offset[MAXGPU] = {};
#pragma omp parallel for
for (int p = 0; p < clNeedDevCnt; p++) {
for (int q = 0; q < workQueSz[p]; q++) {
// -- flatten binary tree
offset[p] = 0;
nodes[p][offset[p]++] = workQue[p][q];
for (int i = 0; i < offset[p]; i++) {
Node *u = nodes[p][i];
if (u->l != NULL)
nodes[p][offset[p]++] = u->l;
if (u->r != NULL)
nodes[p][offset[p]++] = u->r;
}
// -- execute in order
int reuseId = 0;
for (int i = offset[p]-1; i >= 0; i--) {
Node *u = nodes[p][i];
if (u->l == NULL) // is leaf
continue;
u->clV = clMemMid[p][reuseId++];
if (u->opcode == '*')
GPUmultiply(N, u, u->l, u->r, p, clCallFunc);
else
GPUadd(N, u, u->l, u->r, p, clCallFunc);
}
clFlush(clQue[p]);
clFinish(clQue[p]);
nodes[p][0]->hostV = (uint32_t *) malloc(sizeof(uint32_t)*N*N);
int waitN = nodes[p][0]->event != NULL;
clStat = clEnqueueReadBuffer(clQue[p], nodes[p][0]->clV, CL_TRUE, 0,
sizeof(uint32_t)*N*N, nodes[p][0]->hostV, waitN,
waitN ? &(nodes[p][0]->event): NULL, NULL);
uint32_t ret = writeMatrixOut(N, nodes[p][0]->hostV);
resultBuff[nodes[p][0]->pid] = ret;
// -- free inner node buffer
for (int i = 0; i < offset[p]; i++) {
Node *u = nodes[p][i];
if (u->l != NULL && u->hostV)
free(u->hostV);
if (u->l != NULL && u->event)
clReleaseEvent(u->event);
if (u->l != NULL && u->waitEvents)
free(u->waitEvents);
free(u);
}
}
}
return 1;
}
int readIn() {
if (scanf("%s", expr) != 1)
return 0;
return 1;
}
int balance_cmp(const void *a, const void *b) {
Node *x = *(Node **) a;
Node *y = *(Node **) b;
if (x->h == y->h) return 0;
if (x->h < y->h) return 1;
return -1;
}
void onStart(clFuncArgs) {
int S[64];
assert(scanf("%d %d", &M, &N) == 2);
for (int i = 0; i < M; i++)
assert(scanf("%d", &S[i]) == 1);
#pragma omp parallel for
for (int p = 0; p < M; p++) {
uint32_t x = 2, n = N*N;
uint32_t c = S[p];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
hostMtx[p][i*N+j] = x;
}
}
}
initAllGPU("matrix-lib.cl", clCallFunc);
Node *procBuff[128];
if (scanf("%d", &Q) != 1)
return ;
for (int i = 0; i < Q; i++) {
readIn();
int expr_len = strlen(expr);
procBuff[i] = parseExpr(0, expr_len-1, expr, i, clCallFunc);
}
/*
for (int i = 0; i < Q; i++)
executeCPU(procBuff[i]);
return ;
*/
qsort(procBuff, Q, sizeof(Node*), balance_cmp);
float gpuSpeed[16] = {1.f, 1.8f, 3.2f};
long long workload[16] = {};
int workQueSz[MAXGPU] = {};
uint32_t resultBuff[128] = {};
Node *workQue[MAXGPU][128];
for (int i = 0; i < Q; i++) {
int mn = 0;
for (int j = 0; j < clNeedDevCnt; j++) {
if (workload[j]*gpuSpeed[j] < workload[mn]*gpuSpeed[mn])
mn = j;
}
assignGPU(procBuff[i], mn);
workload[mn] += procBuff[i]->h;
workQue[mn][workQueSz[mn]++] = procBuff[i];
}
executeGPU(workQue, workQueSz, resultBuff, clCallFunc);
for (int i = 0; i < Q; i++)
printf("%u\n", resultBuff[i]);
destroyGPU(clCallFunc);
}
void sigHandler(int signo) {
printf("God Bless Me\n");
destroyGPU(clCallFuncOuter);
exit(0);
}
int main(int argc, char *argv[]) {
const char sigErr[] = "I can't catch signal.\n";
if (signal(SIGTRAP, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGSEGV, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGFPE, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGKILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGINT, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
onStart(clCallFuncOuter);
return 0;
}

matrix-lib.cl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#define N %d
#define CTYPE unsigned int
#define UNLOOP 8
__kernel void matrixAdd(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
int x = get_global_id(0);
out[x] = in1[x] + in2[x];
}
__kernel void matrixMul(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
int r = get_global_id(0);
int x = r / N, y = r % N;
unsigned int sum = 0;
for (int i = 0; i < N; i++)
sum += in1[x*N+i] * in2[i*N+y];
out[x*N+y] = sum;
}
Read More +

批改娘 10096. Fast Game of Life (OpenCL)

題目描述

生命遊戲中,對於任意細胞,規則如下:
每個細胞有兩種狀態-存活或死亡,每個細胞與以自身為中心的周圍八格細胞產生互動。

  • 當前細胞為存活狀態時,當周圍低於 2 個 (不包含 2 個) 存活細胞時,該細胞變成死亡狀態。
  • 當前細胞為存活狀態時,當周圍有 2 個或 3 個存活細胞時, 該細胞保持原樣。
  • 當前細胞為存活狀態時,當周圍有 3 個以上的存活細胞時,該細胞變成死亡狀態。
  • 當前細胞為死亡狀態時,當周圍有 3 個存活細胞時,該細胞變成存活狀態。

可以把最初的細胞結構定義為種子,當所有在種子中的細胞同時被以上規則處理後,可以得到第一代細胞圖。按規則繼續處理當前的細胞圖,可以得到下一代的細胞圖,周而復始。

輸入格式

輸入第一行有兩個整數 $N$, $M$,表示盤面大小為 $N \times N$,模擬週期次數 $M$。接下來會有 $N$ 行,每一行上會有 $N$ 個字符,以 0 表示 $(i, j)$ 格子上的細胞屬於死亡狀態,反之 1 為存活狀態。

  • $1 \le N \le 2000$
  • $0 \le M \le 5000$

輸出格式

對於每一組測資輸出 $N$ 行,每一行上有 $N$ 個字元表示模擬 $M$ 次的最終盤面結果。

範例輸入 1

1
2
3
4
5
6
5 1
10001
00100
01110
00100
01010

範例輸出 1

1
2
3
4
5
00000
00100
01010
00000
00100

範例輸入 2

1
2
3
4
5
6
5 3
10001
00100
01110
00100
01010

範例輸出 2

1
2
3
4
5
00000
00000
01110
00000
00000

編譯參數

1
2
$ gcc -std=c99 -O2 main.c -lOpenCL -fopenmp -o main
$ ./main

備註

  • 2016/05/07 放寬時間限制,請減少 clCreateBuffer 數量並重複使用那些已經建立好的。
  • 2016/05/09 提供測資下載

by Morris

Solution

簡單的模擬題目,平行化只需要套用滾動數組即可。

當我們拚命優化 local memory 存取,卻在替同學 debug 時發現意外地加速,於是新境界到來,順便跟同學交流一下加速部份,甚至連開檔時間都要省!一起追尋神乎其技的感覺非常不賴。

3571 ms (24-core CPU) -> 2567 ms (GPU, partial local memory) -> 2472 ms (GPU, full local memory) -> 1675 ms (GPU, full local memory + work group opt) -> 967 ms (GPU, global memory + I/O opt + embedded kernel code)

partial local memory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#define N %d
#define binN %d
#define CTYPE char
__kernel void simulate(__global CTYPE *IN,
__global CTYPE *OUT) {
int x = get_global_id(0);
int y = get_global_id(1);
int localX = get_local_id(0);
int localY = get_local_id(1);
int localSz = get_local_size(0);
__local char g[16][16];
const int dx[] = {-1, -1, -1, 0, 0, 1, 1, 1};
const int dy[] = {-1, 0, 1, -1, 1, -1, 0, 1};
char t = IN[x * binN + y];
g[localX][localY] = t;
barrier(CLK_LOCAL_MEM_FENCE);
int adj = 0;
for (int i = 0; i < 8; i++) {
int cx = localX + dx[i];
int cy = localY + dy[i];
int tx = x + dx[i];
int ty = y + dy[i];
if (tx < 0 || ty < 0 || tx >= N || ty >= N)
continue;
if (cx >= 0 && cx < localSz && cy >= 0 && cy < localSz) {
adj += g[cx][cy];
} else {
adj += IN[tx * binN + ty];
}
}
OUT[x * binN + y] = (t == 0 && adj == 3) || (t == 1 && (adj == 2 || adj == 3));
}

full local memory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#define N %d
#define binN %d
#define localN %d
#define CTYPE char
inline void move_border(__local char g[][localN+2], __global CTYPE *IN,
int localX, int localY, int localSz, int x, int y) {
if (localX == 1) {
g[localX-1][localY] = IN[(x-1) * binN + y];
if (localY == 1)
g[localX-1][localY-1] = IN[(x-1) * binN + (y-1)];
if (localY == localSz)
g[localX-1][localY+1] = IN[(x-1) * binN + (y+1)];
}
if (localY == 1) g[localX][localY-1] = IN[x * binN + (y-1)];
if (localY == localSz) g[localX][localY+1] = IN[x * binN + (y+1)];
if (localX == localSz) {
g[localX+1][localY] = IN[(x+1) * binN + y];
if (localY == 1)
g[localX+1][localY-1] = IN[(x+1) * binN + (y-1)];
if (localY == localSz)
g[localX+1][localY+1] = IN[(x+1) * binN + (y+1)];
}
}
__kernel void simulate(__global CTYPE *IN,
__global CTYPE *OUT) {
int x = get_global_id(0)+1;
int y = get_global_id(1)+1;
int localX = get_local_id(0)+1;
int localY = get_local_id(1)+1;
int localSz = get_local_size(0);
__local char g[localN+2][localN+2];
const int dx[] = {-1, -1, -1, 0, 0, 1, 1, 1};
const int dy[] = {-1, 0, 1, -1, 1, -1, 0, 1};
// move itself to local
char t = IN[x * binN + y];
g[localX][localY] = t;
// move border to local
move_border(g, IN, localX, localY, localSz, x, y);
barrier(CLK_LOCAL_MEM_FENCE);
if (x > N || y > N) return ;
int adj = 0;
for (int i = 0; i < 8; i++) {
int cx = localX + dx[i];
int cy = localY + dy[i];
adj += g[cx][cy];
}
OUT[x * binN + y] = (t == 0 && adj == 3) || (t == 1 && (adj == 2 || adj == 3));
}

最終優化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <CL/cl.h>
#include <omp.h>
#define OPENCL_MAXGPU 2
#define KERNEL_CODE_LEN 32767
#define MAXN 2048
#define MAXM 2
char hostMtx[2][MAXN*MAXN];
int N, M, binN;
// -- start working with OpenCL
const int clNeedDevCnt = 1;
#define CheckFailAndExit(status) \
if (status != CL_SUCCESS) { \
fprintf(stderr, "Error %d: Line %u in file %s\n", status, __LINE__, __FILE__), \
destroyGPU(clCtx, clPrg, clKrn, clQue, clMemIn); \
}
#define clFuncArgs cl_context clCtx[], cl_program clPrg[], cl_kernel clKrn[], \
cl_command_queue clQue[], cl_mem clMemIn[][MAXM]
#define clCallFunc clCtx, clPrg, clKrn, clQue, clMemIn
#define clCallFuncOuter clCtx, clPrg, clKrn, clQue, clMemIn
void destroyGPU(clFuncArgs) {
fprintf(stderr, "Starting Cleanup ...\n\n");
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < M; j++) {
if (clMemIn[i][j])
clReleaseMemObject(clMemIn[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clKrn[i])
clReleaseKernel(clKrn[i]);
if (clPrg[i])
clReleaseProgram(clPrg[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clQue[i])
clReleaseCommandQueue(clQue[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clCtx[i])
clReleaseContext(clCtx[i]);
}
exit(0);
}
int initAllGPU(char fileName[], clFuncArgs) {
static char clSrcFormat[KERNEL_CODE_LEN] =
"#define N %d\n"
"#define M %d\n"
"#define CTYPE char\n"
"__kernel void simulate(__global CTYPE *IN,\n"
" __global CTYPE *OUT) {\n"
" int id = get_global_id(0);\n"
" int x = id / M+1, y = id % M +1;\n"
"#define G(x, y) IN[(x) * N + (y)]\n"
" char t = G(x, y);\n"
" char adj = G(x-1, y-1) + G(x-1, y) + G(x-1, y+1) + G(x, y-1) + G(x, y+1)\n"
" + G(x+1, y-1) + G(x+1, y) + G(x+1, y+1);\n"
" OUT[x * N + y] = (t == 0 && adj == 3) || (t == 1 && (adj == 2 || adj == 3));\n"
"}";
static char clSrc[KERNEL_CODE_LEN] = "";
// -- generate kernel code
// FILE *codefin = fopen(fileName, "r");
// assert(codefin != NULL);
// assert(fread(clSrcFormat, 1, KERNEL_CODE_LEN, codefin) < KERNEL_CODE_LEN);
sprintf(clSrc, clSrcFormat, N+2, N);
size_t clSrcLen = strlen(clSrc);
// fclose(codefin);
cl_int clStat;
cl_uint clPlatN, clGPUN, clDevN;
cl_platform_id clPlatID;
cl_device_id clGPUID[OPENCL_MAXGPU];
const char *clSrcPtr = clSrc;
// -- basic OpenCL setup
clGetPlatformIDs(1, &clPlatID, &clPlatN);
clGetDeviceIDs(clPlatID, CL_DEVICE_TYPE_GPU, OPENCL_MAXGPU, clGPUID, &clDevN);
assert(clDevN >= clNeedDevCnt);
for (int i = 0; i < clNeedDevCnt; i++) {
clCtx[i] = clCreateContext(NULL, 1, clGPUID+i, NULL, NULL, &clStat);
CheckFailAndExit(clStat);
}
for (int i = 0; i < clNeedDevCnt; i++) {
clQue[i] = clCreateCommandQueue(clCtx[i], clGPUID[i],
0, &clStat);
CheckFailAndExit(clStat);
}
for (int i = 0; i < clNeedDevCnt; i++) {
clPrg[i] = clCreateProgramWithSource(clCtx[i], 1, &clSrcPtr, &clSrcLen, &clStat);
CheckFailAndExit(clStat);
clStat = clBuildProgram(clPrg[i], 1, clGPUID+i, "-cl-fast-relaxed-math", NULL, NULL);
if (clStat != CL_SUCCESS) {
fprintf(stderr, "Error: Line %u in file %s\n\n", __LINE__, __FILE__);
size_t log_size;
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *program_log = (char *) calloc(log_size+1, sizeof(char));
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, log_size+1, program_log, NULL);
printf("%s", program_log);
free(program_log);
CheckFailAndExit(CL_BUILD_PROGRAM_FAILURE);
}
clKrn[i] = clCreateKernel(clPrg[i], "simulate", &clStat);
CheckFailAndExit(clStat);
}
// -- create all buffers
cl_mem_flags clInBuffFlag = CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR;
for (int d = 0; d < clNeedDevCnt; d++) {
for (int i = 0; i < 2; i++) {
clMemIn[d][i] = clCreateBuffer(clCtx[d], clInBuffFlag,
sizeof(char)*binN*binN, hostMtx[i], &clStat);
CheckFailAndExit(clStat);
}
}
return 1;
}
int executeGPU(clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
int flag = 0;
for (int it = 0; it < M; it++) {
// -- set argument to kernel
clStat = clSetKernelArg(clKrn[0], 0, sizeof(cl_mem), &clMemIn[0][flag]);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrn[0], 1, sizeof(cl_mem), &clMemIn[0][!flag]);
CheckFailAndExit(clStat);
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[0], clKrn[0], 1, globalOffset,
globalSize, 0, 0, NULL, NULL);
CheckFailAndExit(clStat);
flag = !flag;
}
// -- read back
clStat = clEnqueueReadBuffer(clQue[0], clMemIn[0][flag], CL_TRUE, 0,
sizeof(char)*binN*binN, hostMtx[flag], 0, NULL, NULL);
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++)
hostMtx[flag][i*binN+j] += '0';
puts(hostMtx[flag]+i*binN+1);
}
return 1;
}
void onStart(clFuncArgs) {
assert(scanf("%d %d", &N, &M) == 2);
while (getchar() != '\n');
static char str[2048][2048];
for (int i = 1; i <= N; i++)
assert(fgets(str[i]+1, 2048, stdin) != NULL);
binN = N+2;
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++)
hostMtx[0][i*binN + j] = str[i][j] - '0';
}
initAllGPU("game-of-life.cl", clCallFunc);
executeGPU(clCallFunc);
return ;
}
cl_context clCtx[OPENCL_MAXGPU];
cl_program clPrg[OPENCL_MAXGPU];
cl_kernel clKrn[OPENCL_MAXGPU];
cl_command_queue clQue[OPENCL_MAXGPU];
cl_mem clMemIn[OPENCL_MAXGPU][MAXM];
void sigHandler(int signo) {
printf("God Bless Me\n");
destroyGPU(clCallFuncOuter);
exit(0);
}
int main(int argc, char *argv[]) {
const char sigErr[] = "I can't catch signal.\n";
if (signal(SIGTRAP, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGSEGV, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGFPE, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGKILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGINT, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
onStart(clCallFuncOuter);
return 0;
}
Read More +

批改娘 10095. Matrix Calculator (OpenCL)

題目描述

小明的數學作業要計算方陣,現在請你幫幫他!

題目給定數個 $N \times N$ 的矩陣和 $2$ 小題。

  • $X = AB+CD$
  • $Y = ABE+CDF$

sequence.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <stdio.h>
#include <stdint.h>
// #define DEBUG
#define UINT uint32_t
#define MAXN 1024
void multiply(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
UINT sum = 0; // overflow, let it go.
for (int k = 0; k < N; k++)
sum += A[i][k] * B[k][j];
C[i][j] = sum;
}
}
}
void add(int N, UINT A[][MAXN], UINT B[][MAXN], UINT C[][MAXN]) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
C[i][j] = A[i][j] + B[i][j];
}
}
void rand_gen(UINT c, int N, UINT A[][MAXN]) {
UINT x = 2, n = N*N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + c + i + j)%n;
A[i][j] = x;
}
}
}
void print_matrix(int N, UINT A[][MAXN]) {
for (int i = 0; i < N; i++) {
fprintf(stderr, "[");
for (int j = 0; j < N; j++)
fprintf(stderr, " %u", A[i][j]);
fprintf(stderr, " ]\n");
}
}
UINT signature(int N, UINT A[][MAXN]) {
UINT h = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
h = (h + A[i][j]) * 2654435761LU;
}
return h;
}
UINT IN[6][MAXN][MAXN], TMP[6][MAXN][MAXN];
int main() {
int N, S[6];
scanf("%d", &N);
for (int i = 0; i < 6; i++) {
scanf("%d", &S[i]);
rand_gen(S[i], N, IN[i]);
}
// AB
multiply(N, IN[0], IN[1], TMP[0]);
// CD
multiply(N, IN[2], IN[3], TMP[1]);
// AB+CD
add(N, TMP[0], TMP[1], TMP[2]);
printf("%u\n", signature(N, TMP[2]));
// ABE
multiply(N, TMP[0], IN[4], TMP[3]);
// CDF
multiply(N, TMP[1], IN[5], TMP[4]);
// ABE+CDF
add(N, TMP[3], TMP[4], TMP[5]);
printf("%u\n", signature(N, TMP[5]));
return 0;
}

輸入格式

測資只有一組,第一行會有一個整數 $N$,表示題目給定 $N \times N$ 矩陣,第二行上會有 $6$ 個整數,分別為矩陣 $A, B, C, D, E, F$ 的生成種子。

  • $1 \le N \le 1024$
  • $0 \le S_i \le 2^{31}$

輸出格式

輸出兩行 $X$ 和 $Y$ 的雜湊值,可參考 sequence.c 的流程。

範例輸入 1

1
2
2
0 1 2 3 4 5
$$A = \begin{bmatrix} 0 & 1\\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3\\ 3 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 & 3\\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 3 & 1\\ 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 0 & 1\\ 2 & 2 \end{bmatrix}, F = \begin{bmatrix} 1 & 3\\ 3 & 0 \end{bmatrix}$$ $$AB = \begin{bmatrix} 3 & 0\\ 8 & 6 \end{bmatrix}, CD = \begin{bmatrix} 9 & 8\\ 0 & 0 \end{bmatrix}, AB+CD = \begin{bmatrix} 12 & 8\\ 8 & 6 \end{bmatrix}\\ ABE = \begin{bmatrix} 0 & 3\\ 12 & 20 \end{bmatrix}, CDF = \begin{bmatrix} 33 & 27\\ 0 & 0 \end{bmatrix}, ABE+CDF = \begin{bmatrix} 33 & 30\\ 12 & 20 \end{bmatrix}$$

範例輸出 1

1
2
2385860290
1374821695

範例輸入 2

1
2
10
0 1 2 3 4 5

範例輸出 2

1
2
617438354
1897844131

編譯參數

1
2
$ gcc -std=c99 -O2 main.c -lm -lOpenCL -fopenmp
$ ./main

Solution

這一題用來設計多個 device 共同合作計算一個矩陣表達式,通常會有兩個面向 fine-grain 或者是 coarse-grain,從 fine-grain 角度看來,只需要針對矩陣劃分成數個區塊,例如 device 0 計算 [0, B], device 1 計算 [B+1, 2B] 等方法。而 coarse-grain 則看起來會像是直接從表達式那裡拆分,有可能會重複計算相同的計算值,這裡就不特別消除。

雖然 OpenCL 提供多個 device 共同合作的平台,藉由 context 建立 buffer,但是他們傳輸還是得透過 CPU 控制,沒辦法直接存取另一個 GPU 的 global memory,但寫起來方便許多。

coarse grain 版本

這個版本會針對計算能力做 scheduling,兩個表達式 $X\;, Y$ 分別拆到兩個裝置上運行,重複計算就不理會。將計算量大的表達式丟到較高運算能力的 GPU 上執行。

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <CL/cl.h>
#include <omp.h>
#define MAXGPU 2
#define MAXN 1024
#define MAXM 26
#define GPULOCAL 64
#define MAXMID 20
uint32_t hostMtx[MAXM][MAXN*MAXN];
int N, binN, M, Q;
char expr[1024];
char clSrcFormat[32767] = "";
char clSrc[32767] = "";
// -- start working with OpenCL
const int clNeedDevCnt = 2;
cl_context clCtx[2];
cl_program clPrg[2];
cl_kernel clKrnAdd[2], clKrnMul[2];
cl_command_queue clQue[2];
cl_mem clMemIn[2][MAXM], clMemMid[2][MAXM*2];
typedef struct Node {
struct Node *l, *r;
int opcode;
uint32_t *hostV;
cl_mem clV;
cl_event event, *waitEvents;
int waitEventsN;
int pid, mid;
long long h;
} Node;
#define CheckFailAndExit(status) \
if (status != CL_SUCCESS) { \
fprintf(stderr, "Error %d: Line %u in file %s\n\n", status, __LINE__, __FILE__), \
destroyGPU(clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn); \
}
#define clFuncArgs cl_context clCtx[], cl_program clPrg[], cl_kernel clKrnAdd[], \
cl_kernel clKrnMul[], cl_command_queue clQue[], cl_mem clMemIn[][MAXM]
#define clCallFunc clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn
#define clCallFuncOuter clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn
void assignGPU(Node *u, int gpuIdx) {
if (u == NULL) return ;
if (u->l == NULL) {
u->hostV = hostMtx[u->mid];
u->clV = clMemIn[gpuIdx][u->mid];
return ;
}
assignGPU(u->l, gpuIdx);
assignGPU(u->r, gpuIdx);
}
Node* parseExpr(int l, int r, char expr[], int procId, clFuncArgs) {
cl_int clStat;
Node *u = (Node *) calloc(1, sizeof(Node));
u->pid = procId;
if (l == r) {
int idx = expr[l] - 'A';
u->hostV = hostMtx[idx];
u->mid = idx;
u->h = 0;
return u;
}
int cnt = 0;
for (int i = l; i <= r; i++) {
if (expr[i] == '(') {
cnt++;
} else if (expr[i] == ')') {
cnt--;
} else if (expr[i] == '+' && cnt == 0) {
u->l = parseExpr(l, i-1, expr, procId, clCallFunc);
u->r = parseExpr(i+1, r, expr, procId, clCallFunc);
u->opcode = '+';
u->h = u->l->h + u->r->h + N;
return u;
}
}
for (int i = l; i <= r; i++) {
if (expr[i] == '(') {
if (cnt == 0 && i != l) {
u->l = parseExpr(l, i-1, expr, procId, clCallFunc);
u->r = parseExpr(i, r, expr, procId, clCallFunc);
u->opcode = '*';
u->h = u->l->h + u->r->h + N*N;
return u;
}
cnt++;
} else if (expr[i] == ')') {
cnt--;
} else if (expr[i] >= 'A' && expr[i] <= 'Z' && cnt == 0 && i != l) {
u->l = parseExpr(l, i-1, expr, procId, clCallFunc);
u->r = parseExpr(i, r, expr, procId, clCallFunc);
u->opcode = '*';
u->h = u->l->h + u->r->h + N*N;
return u;
}
}
free(u);
return parseExpr(l+1, r-1, expr, procId, clCallFunc);
}
uint32_t writeMatrixOut(int N, uint32_t *A) {
uint32_t h = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
h = (h + A[i*binN + j]) * 2654435761LU;
return h;
}
void destroyGPU(clFuncArgs) {
fprintf(stderr, "Starting Cleanup ...\n\n");
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < M; j++) {
if (clMemIn[i][j])
clReleaseMemObject(clMemIn[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < MAXMID; j++) {
if (clMemMid[i][j])
clReleaseMemObject(clMemMid[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clKrnAdd[i]) clReleaseKernel(clKrnAdd[i]);
if (clKrnMul[i]) clReleaseKernel(clKrnMul[i]);
if (clPrg[i]) clReleaseProgram(clPrg[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clQue[i])
clReleaseCommandQueue(clQue[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clCtx[i])
clReleaseContext(clCtx[i]);
}
exit(0);
}
int initAllGPU(char fileName[], clFuncArgs) {
// -- generate kernel code
FILE *codefin = fopen(fileName, "r");
assert(codefin != NULL);
assert(fread(clSrcFormat, 1, 32767, codefin) < 32767);
sprintf(clSrc, clSrcFormat, binN);
size_t clSrcLen = strlen(clSrc);
fclose(codefin);
cl_int clStat;
cl_uint clPlatN, clGPUN, clDevN;
cl_platform_id clPlatID;
cl_device_id clGPUID[MAXGPU];
const char *clSrcPtr = clSrc;
// -- basic OpenCL setup
clGetPlatformIDs(1, &clPlatID, &clPlatN);
clGetDeviceIDs(clPlatID, CL_DEVICE_TYPE_GPU, MAXGPU, clGPUID, &clDevN);
assert(clDevN >= clNeedDevCnt);
for (int i = 0; i < clNeedDevCnt; i++) {
clCtx[i] = clCreateContext(NULL, 1, clGPUID+i, NULL, NULL, &clStat);
CheckFailAndExit(clStat);
}
for (int i = 0; i < clNeedDevCnt; i++) {
clQue[i] = clCreateCommandQueue(clCtx[i], clGPUID[i],
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &clStat);
CheckFailAndExit(clStat);
}
for (int i = 0; i < clNeedDevCnt; i++) {
clPrg[i] = clCreateProgramWithSource(clCtx[i], 1, &clSrcPtr, &clSrcLen, &clStat);
CheckFailAndExit(clStat);
clStat = clBuildProgram(clPrg[i], 1, clGPUID+i, NULL, NULL, NULL);
if (clStat != CL_SUCCESS) {
fprintf(stderr, "Error: Line %u in file %s\n\n", __LINE__, __FILE__);
size_t log_size;
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *program_log = (char *) calloc(log_size+1, sizeof(char));
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, log_size+1, program_log, NULL);
printf("%s", program_log);
free(program_log);
CheckFailAndExit(CL_BUILD_PROGRAM_FAILURE);
}
clKrnAdd[i] = clCreateKernel(clPrg[i], "matrixAdd", &clStat);
CheckFailAndExit(clStat);
clKrnMul[i] = clCreateKernel(clPrg[i], "matrixMul", &clStat);
CheckFailAndExit(clStat);
}
// -- create all buffers
cl_mem_flags clInBuffFlag = CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR;
for (int d = 0; d < clNeedDevCnt; d++) {
for (int i = 0; i < M; i++) {
clMemIn[d][i] = clCreateBuffer(clCtx[d], clInBuffFlag, sizeof(uint32_t)*binN*binN,
hostMtx[i], &clStat);
CheckFailAndExit(clStat);
}
}
for (int d = 0; d < clNeedDevCnt; d++) {
for (int i = 0; i < MAXMID; i++) {
clMemMid[d][i] = clCreateBuffer(clCtx[d], CL_MEM_READ_WRITE,
sizeof(uint32_t)*binN*binN, NULL, &clStat);
CheckFailAndExit(clStat);
}
}
return 1;
}
void GPUmultiply(int N, Node *U, Node *L, Node *R, int devIdx, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {binN};
size_t localSize[] = {GPULOCAL};
// -- set argument to kernel
clStat = clSetKernelArg(clKrnMul[devIdx], 0, sizeof(cl_mem), &(L->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 1, sizeof(cl_mem), &(R->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[devIdx], 2, sizeof(cl_mem), &(U->clV));
CheckFailAndExit(clStat);
// -- find wait events
int waitN = 0, waitCnt = 0;
if (L->event) waitCnt++;
if (R->event) waitCnt++;
cl_event *events = (cl_event*) malloc(sizeof(cl_event) * waitCnt);
if (L->event) events[waitN++] = L->event;
if (R->event) events[waitN++] = R->event;
U->waitEvents = events, U->waitEventsN = waitCnt;
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnMul[devIdx], 1, globalOffset,
globalSize, localSize, U->waitEventsN, U->waitEvents, &(U->event) );
CheckFailAndExit(clStat);
}
void GPUadd(int N, Node *U, Node *L, Node *R, int devIdx, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {binN*binN};
size_t localSize[] = {1};
// -- set argument to kernel
clStat = clSetKernelArg(clKrnAdd[devIdx], 0, sizeof(cl_mem), &(L->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[devIdx], 1, sizeof(cl_mem), &(R->clV));
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[devIdx], 2, sizeof(cl_mem), &(U->clV));
CheckFailAndExit(clStat);
// -- find wait events
int waitN = 0, waitCnt = 0;
if (L->event) waitCnt++;
if (R->event) waitCnt++;
cl_event *events = (cl_event*) malloc(sizeof(cl_event) * waitCnt);
if (L->event) events[waitN++] = L->event;
if (R->event) events[waitN++] = R->event;
U->waitEvents = events, U->waitEventsN = waitCnt;
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnAdd[devIdx], 1, globalOffset,
globalSize, localSize, U->waitEventsN, U->waitEvents, &(U->event) );
CheckFailAndExit(clStat);
}
int executeGPU(Node *workQue[][128], int workQueSz[], uint32_t resultBuff[], clFuncArgs) {
cl_int clStat;
Node* nodes[2][128];
int offset[2] = {};
#pragma omp parallel for
for (int p = 0; p < clNeedDevCnt; p++) {
for (int q = 0; q < workQueSz[p]; q++) {
// -- flatten binary tree
offset[p] = 0;
nodes[p][offset[p]++] = workQue[p][q];
for (int i = 0; i < offset[p]; i++) {
Node *u = nodes[p][i];
if (u->l != NULL)
nodes[p][offset[p]++] = u->l;
if (u->r != NULL)
nodes[p][offset[p]++] = u->r;
}
// -- execute in order
int reuseId = 0;
for (int i = offset[p]-1; i >= 0; i--) {
Node *u = nodes[p][i];
if (u->l == NULL) // is leaf
continue;
u->clV = clMemMid[p][reuseId++];
if (u->opcode == '*')
GPUmultiply(N, u, u->l, u->r, p, clCallFunc);
else
GPUadd(N, u, u->l, u->r, p, clCallFunc);
}
clFlush(clQue[p]);
clFinish(clQue[p]);
nodes[p][0]->hostV = (uint32_t *) malloc(sizeof(uint32_t)*binN*binN);
int waitN = nodes[p][0]->event != NULL;
clStat = clEnqueueReadBuffer(clQue[p], nodes[p][0]->clV, CL_TRUE, 0,
sizeof(uint32_t)*binN*binN, nodes[p][0]->hostV, waitN,
waitN ? &(nodes[p][0]->event): NULL, NULL);
uint32_t ret = writeMatrixOut(N, nodes[p][0]->hostV);
resultBuff[nodes[p][0]->pid] = ret;
// -- free inner node buffer
for (int i = 0; i < offset[p]; i++) {
Node *u = nodes[p][i];
if (u->l != NULL && u->hostV)
free(u->hostV);
if (u->l != NULL && u->event)
clReleaseEvent(u->event);
if (u->l != NULL && u->waitEvents)
free(u->waitEvents);
free(u);
}
}
}
return 1;
}
void CPUmultiply(int N, uint32_t *A, uint32_t *B, uint32_t *C) {
#pragma omp parallel for
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
uint32_t sum = 0;
for (int k = 0; k < N; k++)
sum += A[i*binN+k] * B[k*binN+j];
C[i*binN+j] = sum;
}
}
}
void CPUadd(int N, uint32_t *A, uint32_t *B, uint32_t *C) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
C[i*binN+j] = A[i*binN+j] + B[i*binN+j];
}
}
}
int executeCPU(Node *root) {
// -- flatten binary tree
Node* nodes[128];
int offset = 0;
nodes[offset++] = root;
for (int i = 0; i < offset; i++) {
Node *u = nodes[i];
if (u->l != NULL)
nodes[offset++] = u->l;
if (u->r != NULL)
nodes[offset++] = u->r;
}
for (int i = offset-1; i >= 0; i--) {
Node *u = nodes[i];
if (u->l == NULL) // is leaf
continue;
u->hostV = (uint32_t *) calloc(1, sizeof(uint32_t)*binN*binN);
if (u->opcode == '*')
CPUmultiply(N, u->l->hostV, u->r->hostV, u->hostV);
else
CPUadd(N, u->l->hostV, u->r->hostV, u->hostV);
// -- free inner node buffer
if (u->l->l != NULL)
free(u->l->hostV), u->l->hostV = NULL;
if (u->r->l != NULL)
free(u->r->hostV), u->r->hostV = NULL;
}
/*
for (int k = 0; k < M; k++) {
printf("=== Matrix %c ===\n", k + 'A');
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
printf("%u ", hostMtx[k][i*N+j]);
puts("");
}
}
*/
/* puts("=== final");
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
printf("%u ", nodes[0]->hostV[i*binN+j]);
puts("");
}
*/
uint32_t ret = writeMatrixOut(N, nodes[0]->hostV);
printf("%u\n", ret);
for (int i = 0; i < offset; i++) {
Node *u = nodes[i];
if (u->l != NULL && u->hostV)
free(u->hostV);
free(u);
}
}
int readIn() {
if (scanf("%s", expr) != 1)
return 0;
return 1;
}
int balance_cmp(const void *a, const void *b) {
Node *x = *(Node **) a;
Node *y = *(Node **) b;
if (x->h == y->h) return 0;
if (x->h < y->h) return 1;
return -1;
}
void onStart(clFuncArgs) {
int S[64];
M = 6;
assert(scanf("%d", &N) == 1);
binN = N;
while (binN % GPULOCAL)
binN++;
for (int i = 0; i < M; i++)
assert(scanf("%d", &S[i]) == 1);
#pragma omp parallel for
for (int p = 0; p < M; p++) {
uint32_t x = 2, n = N*N;
memset(hostMtx[p], 0, sizeof(uint32_t)*binN*binN);
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + S[p] + i + j)%n;
hostMtx[p][i*binN+j] = x;
}
}
}
initAllGPU("matrix-lib.cl", clCallFunc);
Node *procBuff[128];
Q = 2;
for (int i = 0; i < Q; i++) {
if (i == 0) strcpy(expr, "AB+CD");
else strcpy(expr, "ABE+CDF");
int expr_len = strlen(expr);
procBuff[i] = parseExpr(0, expr_len-1, expr, i, clCallFunc);
}
/*
for (int i = 0; i < Q; i++)
executeCPU(procBuff[i]);
return ;
*/
qsort(procBuff, Q, sizeof(Node*), balance_cmp);
long long workload[16] = {};
int workQueSz[2] = {};
uint32_t resultBuff[128];
Node *workQue[2][128];
for (int i = 0; i < Q; i++) {
int mn = 0;
for (int j = 0; j < clNeedDevCnt; j++) {
if (workload[j] < workload[mn])
mn = j;
}
assignGPU(procBuff[i], mn);
workload[mn] += procBuff[i]->h;
workQue[mn][workQueSz[mn]++] = procBuff[i];
}
executeGPU(workQue, workQueSz, resultBuff, clCallFunc);
for (int i = 0; i < Q; i++)
printf("%u\n", resultBuff[i]);
destroyGPU(clCallFunc);
}
void sigHandler(int signo) {
printf("God Bless Me\n");
destroyGPU(clCallFuncOuter);
exit(0);
}
int main(int argc, char *argv[]) {
const char sigErr[] = "I can't catch signal.\n";
if (signal(SIGTRAP, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGSEGV, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGFPE, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGKILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGINT, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
onStart(clCallFuncOuter);
return 0;
}

matrix-lib.cl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#define N %d
#define CTYPE unsigned int
#define UNLOOP 8
__kernel void matrixAdd(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
int x = get_global_id(0);
out[x] = in1[x] + in2[x];
}
__kernel void matrixMul(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
CTYPE rbuf[N];
int r = get_global_id(0);
int localID = get_local_id(0);
int localSz = get_local_size(0);
__local CTYPE cbuf[N];
for (int i = 0; i < N; i++)
rbuf[i] = in1[r * N + i];
for (int c = 0; c < N; c++) {
for (int cr = localID; cr < N; cr += localSz)
cbuf[cr] = in2[cr * N + c];
barrier(CLK_LOCAL_MEM_FENCE);
CTYPE sum = 0;
for (int k = 0; k+UNLOOP-1 < N; k += UNLOOP) {
sum += rbuf[k+0] * cbuf[k+0];
sum += rbuf[k+1] * cbuf[k+1];
sum += rbuf[k+2] * cbuf[k+2];
sum += rbuf[k+3] * cbuf[k+3];
sum += rbuf[k+4] * cbuf[k+4];
sum += rbuf[k+5] * cbuf[k+5];
sum += rbuf[k+6] * cbuf[k+6];
sum += rbuf[k+7] * cbuf[k+7];
}
out[r * N + c] = sum;
}
}

作弊版本

單一個 device 完成,因為 create context 的 overhead 過大,倒不如直接用一個最好的 device 完成所有計算。

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include <stdio.h>
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <CL/cl.h>
#include <omp.h>
#define MAXGPU 1
#define MAXN 1024
#define MAXM 6
#define GPULOCAL 32
#define MAXMID 8
uint32_t hostMtx[MAXM][MAXN*MAXN];
uint32_t hostX[MAXN*MAXN], hostY[MAXN*MAXN];
int N, M, Q;
char clSrcFormat[32767] = "";
char clSrc[32767] = "";
// -- start working with OpenCL
const int clNeedDevCnt = 1;
cl_context clCtx[2];
cl_program clPrg[2];
cl_kernel clKrnAdd[2], clKrnMul[2];
cl_command_queue clQue[2];
cl_mem clMemIn[2][MAXM], clMemMid[2][MAXMID];
#define CheckFailAndExit(status) \
if (status != CL_SUCCESS) { \
fprintf(stderr, "Error %d: Line %u in file %s\n\n", status, __LINE__, __FILE__), \
destroyGPU(clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn); \
}
#define clFuncArgs cl_context clCtx[], cl_program clPrg[], cl_kernel clKrnAdd[], \
cl_kernel clKrnMul[], cl_command_queue clQue[], cl_mem clMemIn[][MAXM]
#define clCallFunc clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn
#define clCallFuncOuter clCtx, clPrg, clKrnAdd, clKrnMul, clQue, clMemIn
uint32_t writeMatrixOut(int N, uint32_t *A) {
uint32_t h = 0;
uint32_t *Aend = A + N*N;
for (; A != Aend; A++)
h = (h + *A) * 2654435761LU;
return h;
}
void destroyGPU(clFuncArgs) {
fprintf(stderr, "Starting Cleanup ...\n\n");
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < M; j++) {
if (clMemIn[i][j])
clReleaseMemObject(clMemIn[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
for (int j = 0; j < MAXMID; j++) {
if (clMemMid[i][j])
clReleaseMemObject(clMemMid[i][j]);
}
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clKrnAdd[i]) clReleaseKernel(clKrnAdd[i]);
if (clKrnMul[i]) clReleaseKernel(clKrnMul[i]);
if (clPrg[i]) clReleaseProgram(clPrg[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clQue[i])
clReleaseCommandQueue(clQue[i]);
}
for (int i = 0; i < clNeedDevCnt; i++) {
if (clCtx[i]) clReleaseContext(clCtx[i]);
}
exit(0);
}
int initAllGPU(char fileName[], clFuncArgs) {
// -- generate kernel code
FILE *codefin = fopen(fileName, "r");
assert(codefin != NULL);
assert(fread(clSrcFormat, 1, 32767, codefin) < 32767);
sprintf(clSrc, clSrcFormat, N);
size_t clSrcLen = strlen(clSrc);
fclose(codefin);
cl_int clStat;
cl_uint clPlatN, clGPUN, clDevN;
cl_platform_id clPlatID;
cl_device_id clGPUID[MAXGPU];
const char *clSrcPtr = clSrc;
// -- basic OpenCL setup
clGetPlatformIDs(1, &clPlatID, &clPlatN);
clGetDeviceIDs(clPlatID, CL_DEVICE_TYPE_GPU, MAXGPU, clGPUID, &clDevN);
assert(clDevN >= clNeedDevCnt);
clCtx[0] = clCreateContext(NULL, 1, clGPUID, NULL, NULL, &clStat);
CheckFailAndExit(clStat);
for (int i = 0; i < clNeedDevCnt; i++) {
clQue[i] = clCreateCommandQueue(clCtx[0], clGPUID[i],
/*CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE*/ 0, &clStat);
CheckFailAndExit(clStat);
}
clPrg[0] = clCreateProgramWithSource(clCtx[0], 1, &clSrcPtr, &clSrcLen, &clStat);
CheckFailAndExit(clStat);
clStat = clBuildProgram(clPrg[0], 1, clGPUID, NULL, NULL, NULL);
if (clStat != CL_SUCCESS) {
fprintf(stderr, "Error: Line %u in file %s\n\n", __LINE__, __FILE__);
size_t log_size;
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *program_log = (char *) calloc(log_size+1, sizeof(char));
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, log_size+1, program_log, NULL);
printf("%s", program_log);
free(program_log);
CheckFailAndExit(CL_BUILD_PROGRAM_FAILURE);
}
clKrnAdd[0] = clCreateKernel(clPrg[0], "matrixAdd", &clStat);
CheckFailAndExit(clStat);
clKrnMul[0] = clCreateKernel(clPrg[0], "matrixMul", &clStat);
CheckFailAndExit(clStat);
// -- create all buffers
cl_mem_flags clInBuffFlag = CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR;
for (int j = 0; j < clNeedDevCnt; j++) {
for (int i = 0; i < M; i++) {
clMemIn[j][i] = clCreateBuffer(clCtx[0], clInBuffFlag, sizeof(uint32_t)*N*N,
hostMtx[i], &clStat);
CheckFailAndExit(clStat);
}
}
for (int j = 0; j < clNeedDevCnt; j++) {
for (int i = 0; i < MAXMID; i++) {
clMemMid[j][i] = clCreateBuffer(clCtx[0], CL_MEM_READ_WRITE,
sizeof(uint32_t)*N*N, NULL, &clStat);
CheckFailAndExit(clStat);
}
}
return 1;
}
void GPUmultiply(int N, int waitN, cl_event events[], cl_event *ret_event,
int devIdx, cl_mem *LIN, cl_mem *RIN, cl_mem *OUT, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
size_t localSize[] = {GPULOCAL};
// -- set argument to kernel
clStat = clSetKernelArg(clKrnMul[0], 0, sizeof(cl_mem), LIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[0], 1, sizeof(cl_mem), RIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnMul[0], 2, sizeof(cl_mem), OUT);
CheckFailAndExit(clStat);
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnMul[0], 1, globalOffset,
globalSize, NULL, waitN, events, ret_event);
CheckFailAndExit(clStat);
}
void GPUadd(int N, int waitN, cl_event events[], cl_event *ret_event,
int devIdx, cl_mem *LIN, cl_mem *RIN, cl_mem *OUT, clFuncArgs) {
cl_int clStat;
size_t globalOffset[] = {0};
size_t globalSize[] = {N*N};
// -- set argument to kernel
clStat = clSetKernelArg(clKrnAdd[0], 0, sizeof(cl_mem), LIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[0], 1, sizeof(cl_mem), RIN);
CheckFailAndExit(clStat);
clStat = clSetKernelArg(clKrnAdd[0], 2, sizeof(cl_mem), OUT);
CheckFailAndExit(clStat);
// -- execute
clStat = clEnqueueNDRangeKernel(clQue[devIdx], clKrnAdd[0], 1, globalOffset,
globalSize, NULL, waitN, events, ret_event);
CheckFailAndExit(clStat);
}
int executeGPU(clFuncArgs) {
cl_int clStat;
cl_event events[4];
// AB
GPUmultiply(N, 0, NULL, &events[0], 0, &clMemIn[0]['A'-'A'], &clMemIn[0]['B'-'A'],
&clMemMid[0][0], clCallFunc);
fprintf(stderr, "AB\n");
// CD
GPUmultiply(N, 0, NULL, &events[1], 0, &clMemIn[0]['C'-'A'], &clMemIn[0]['D'-'A'],
&clMemMid[0][1], clCallFunc);
fprintf(stderr, "CD\n");
// ABE
GPUmultiply(N, 1, &events[0], &events[2], 0, &clMemMid[0][0], &clMemIn[0]['E'-'A'],
&clMemMid[0][2], clCallFunc);
fprintf(stderr, "ABE\n");
// CDF
GPUmultiply(N, 1, &events[1], &events[3], 0, &clMemMid[0][1], &clMemIn[0]['F'-'A'],
&clMemMid[0][3], clCallFunc);
fprintf(stderr, "CDF\n");
// AB+CD
GPUadd(N, 2, &events[0], NULL, 0, &clMemMid[0][0], &clMemMid[0][1], &clMemMid[0][4],
clCallFunc);
fprintf(stderr, "AB+CD\n");
// ABE+CDF
GPUadd(N, 2, &events[2], NULL, 0, &clMemMid[0][2], &clMemMid[0][3], &clMemMid[0][5],
clCallFunc);
fprintf(stderr, "ABE+CDF\n");
clFinish(clQue[0]);
clStat = clEnqueueReadBuffer(clQue[0], clMemMid[0][4], CL_TRUE, 0,
sizeof(uint32_t)*N*N, hostX, 0, NULL, NULL);
CheckFailAndExit(clStat);
clStat = clEnqueueReadBuffer(clQue[0], clMemMid[0][5], CL_TRUE, 0,
sizeof(uint32_t)*N*N, hostY, 0, NULL, NULL);
CheckFailAndExit(clStat);
printf("%u\n", writeMatrixOut(N, hostX));
printf("%u\n", writeMatrixOut(N, hostY));
return 1;
}
void onStart(clFuncArgs) {
int S[64];
assert(scanf("%d", &N) == 1);
M = 6;
for (int i = 0; i < M; i++)
assert(scanf("%d", &S[i]) == 1);
#pragma omp parallel for
for (int p = 0; p < M; p++) {
uint32_t x = 2, n = N*N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
x = (x * x + S[p] + i + j)%n;
hostMtx[p][i*N+j] = x;
}
}
}
initAllGPU("matrix-lib.cl", clCallFunc);
executeGPU(clCallFunc);
destroyGPU(clCallFunc);
}
void sigHandler(int signo) {
printf("God Bless Me\n");
destroyGPU(clCallFuncOuter);
exit(0);
}
int main(int argc, char *argv[]) {
const char sigErr[] = "I can't catch signal.\n";
if (signal(SIGTRAP, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGSEGV, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGILL, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGFPE, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
if (signal(SIGINT, sigHandler) == SIG_ERR)
fprintf(stderr, sigErr);
onStart(clCallFuncOuter);
return 0;
}

matrix-lib.cl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#define N %d
#define CTYPE unsigned int
__kernel void matrixAdd(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
int x = get_global_id(0);
out[x] = in1[x] + in2[x];
}
__kernel void matrixMul(__global CTYPE *in1,
__global CTYPE *in2,
__global CTYPE *out) {
int id = get_global_id(0);
int x = id / N, y = id % N;
CTYPE sum = 0;
for (int i = 0; i < N; i++)
sum += in1[x*N + i] * in2[i*N + y];
out[x * N + y] = sum;
}
Read More +

批改娘 10092. OpenCL Build Program Debug

題目描述

為 OpenCL 中的 clBuildProgram() Debug 鋪路。請嘗試從標準輸入得到要編譯的檔案名稱,並把編譯的錯誤訊息輸出。

err1.cl

1
2
3
4
5
typedef unsigned int uint32_t;
__kernel void mul(__global uint32_t A[], __global uint32_t C[], const int N)
{
opencl;
}

輸入格式

輸入只有一行,字串長度不大於 30 的檔案名稱。

輸出格式

將錯誤訊息印出,如 printf("%s", program_log);

範例輸入 1

1
err1.cl

範例輸出 1

1
2
3
<kernel>:4:2: error: use of undeclared identifier 'opencl'
opencl;
^

Solution

盡量使用較少的 device,減少建立文本的 overhead,反正都是錯誤的代碼要找編譯錯誤資訊,那麼就直接用其中一個 device 編譯即可,除非牽涉到 compute version 問題,原則上都會是一樣的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <CL/cl.h>
#define MAXGPU 1
#define MAXN 2048
int N = MAXN;
char clSrc[1024] = "";
char clSrcMain[1024] = "notused";
// -- start working with OpenCL
cl_context clCtx;
cl_program clPrg;
#define clCallFunc &clCtx, &clPrg
#define clFuncArgs cl_context *clCtx, cl_program *clPrg
#define CheckFailAndExit(status) \
if (status != CL_SUCCESS) { \
fprintf(stderr, "Error: Line %u in file %s\n\n", __LINE__, __FILE__), \
destroyGPU(clCtx, clPrg); \
}
#define clPrint(fmt, ...) fprintf(stdout, fmt, ##__VA_ARGS__)
void destroyGPU(clFuncArgs) {
fprintf(stderr, "Starting Cleanup ...\n\n");
if (*clCtx) clReleaseContext(*clCtx);
if (*clPrg) clReleaseProgram(*clPrg);
exit(0);
}
void clCompile(char fileName[], clFuncArgs) {
FILE *codefin = fopen(fileName, "r");
assert(codefin != NULL);
size_t clSrcLen = fread(clSrc, 1, 1024, codefin);
fclose(codefin);
cl_int clStat;
cl_uint clPlatN, clGPUN;
cl_platform_id clPlatID;
cl_device_id clGPUID[MAXGPU];
const char *clSrcPtr = clSrc;
// -- basic OpenCL setup
clGetPlatformIDs(1, &clPlatID, &clPlatN);
clGetDeviceIDs(clPlatID, CL_DEVICE_TYPE_GPU, MAXGPU, clGPUID, &clGPUN);
*clCtx = clCreateContext(NULL, 1, clGPUID, NULL, NULL, &clStat);
CheckFailAndExit(clStat);
*clPrg = clCreateProgramWithSource(*clCtx, 1, &clSrcPtr, &clSrcLen, &clStat);
CheckFailAndExit(clStat);
clStat = clBuildProgram(*clPrg, 1, clGPUID, NULL, NULL, NULL);
if (clStat != CL_SUCCESS) {
static char program_log[32767];
clGetProgramBuildInfo(*clPrg, clGPUID[0],
CL_PROGRAM_BUILD_LOG, sizeof(program_log), program_log, NULL);
printf("%s", program_log);
CheckFailAndExit(CL_BUILD_PROGRAM_FAILURE);
}
}
int main() {
char fileName[128];
assert(scanf("%s", fileName) == 1);
clCompile(fileName, clCallFunc);
// Compile Success
destroyGPU(clCallFunc);
return 0;
}
Read More +