UVa 10397 - Connect the Campus

contents

  1. 1. Problem
  2. 2. Sample Input
  3. 3. Sample Output
  4. 4. Solution

Problem

在現有的鋪設下,還有幾處建築物之間沒有連通。

找到花費最小的歐基里德距離生成樹

Sample Input

1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
103 104
104 100
104 103
100 100
1
4 2
4
103 104
104 100
104 103
100 100
1
4 2

Sample Output

1
2
4.41
4.41

Solution

直接用 kruskal 就可以完成,但是建造邊最慘將會達到 O(n^2),因此效率並不好,好幾年之後回過頭來寫這一題。

對於 EMST 可以使用 Delaunay triangulation 完成。Delaunay triangulation 原則上可以在 O(n log n) 時間內完成。由於 EMST 是 Delaunay 的 subgraph,而 Delaunay 保證 edge 數最多為 3n - 6。套用 kruskal 的 O(E log E) 算法就能保證在 O(n log n) 時間內完成。

Delaunay triangulation 目前實作有 D&C 和 random 兩種。

計算幾何資料請參照 morris821028/Computational-Geometry 下載。

廣泛的比較下,兩者期望都在 O(n log n) 完成,而實際結果 D&C 普遍速度快很多。random 作法很吃機率期望,原因是要支持動態的 point location 操作,沒有一個好的資料結構來保證每一步的搜索效率,教科書上給予一個類似可持久化結構的 DG structure,深度是期望的 O(log n),實作起來只會比 O(n) 快個常數倍。但 random increase algorithm 對於演算法的證明的確是比較容易,而且步驟相當好說明。

當效率不好去學 D&C algorithm,一開始要對座標進行排序,也就是不支持動態 (離線操作),接著針對 x 座標剖半,兩個完成 Delaunay triangulation 的凸包進行合併,接著需要將中間縫隙穿針引線地縫起來。因此要找到兩個凸包的下公切線,然後開始攀爬上去,保證一開始的下公切線一定是 Delaunay edge,然後開始窮舉下一個 Delaunay edge,過程中也不斷地移除不適的邊。

有相當不錯的資料結構可以快速地搜索公切線、圍繞凸包的頂點 … 等,但是根據教科書給予的計算,每一個點的 degree 期望值不超過 9,意即偷偷地窮舉攀爬不影響效率。

關於三點共圓,詢問一點是否在圓內的操作,投影到拋物面上,三點在投影結果上拉出一個平面,若點在圓內,則保證該點在平面的下方。求出外心計算,會造成誤差 (無法儲存除法運算結果),換成拋物面的思路魯棒性高。

下附 D&C algorithm 的做法,關於 random 就放在 github repo 封存了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#include <iostream>
#include <assert.h>
#include <string.h>
#include <list>
using namespace std;
#define eps 1e-8
#define MAXN (1048576)
#define MAXV 1024
struct Point {
double x, y;
int id;
Point(double a = 0, double b = 0, int c = -1):
x(a), y(b), id(c) {}
Point operator-(const Point &a) const {
return Point(x - a.x, y - a.y);
}
Point operator+(const Point &a) const {
return Point(x + a.x, y + a.y);
}
Point operator*(const double a) const {
return Point(x * a, y * a);
}
Point operator/(const double a) const {
return Point(x / a, y / a);
}
bool operator<(const Point &a) const {
if (fabs(x - a.x) > eps) return x < a.x;
if (fabs(y - a.y) > eps) return y < a.y;
return false;
}
bool operator==(const Point &a) const {
return fabs(x - a.x) < eps && fabs(y - a.y) < eps;
}
bool operator!=(const Point &a) const {
return !(fabs(x - a.x) < eps && fabs(y - a.y) < eps);
}
void read(int id = -1) {
this->id = id;
}
double dist(Point b) {
return hypot(x - b.x, y - b.y);
}
double dist2(Point b) {
return (x - b.x) * (x - b.x) + (y - b.y) * (y - b.y);
}
void print() {
printf("point (%lf, %lf)\n", x, y);
}
};
struct Point3D {
double x, y, z;
Point3D(double a = 0, double b = 0, double c = 0):
x(a), y(b), z(c) {}
Point3D(Point p) {
x = p.x, y = p.y, z = p.x * p.x + p.y * p.y;
}
Point3D operator-(const Point3D &a) const {
return Point3D(x - a.x, y - a.y, z - a.z);
}
double dot(Point3D a) {
return x * a.x + y * a.y + z * a.z;
}
};
struct Edge {
int id;
list<Edge>::iterator twin;
Edge(int id = 0) {
this->id = id;
}
};
int cmpZero(double v) {
if (fabs(v) > eps) return v > 0 ? 1 : -1;
return 0;
}
double cross(Point o, Point a, Point b) {
return (a.x-o.x)*(b.y-o.y) - (a.y-o.y)*(b.x-o.x);
}
Point3D cross(Point3D a, Point3D b) { // normal vector
return Point3D(a.y * b.z - a.z * b.y
, -a.x * b.z + a.z * b.x
, a.x * b.y - a.y * b.x);
}
int inCircle(Point a, Point b, Point c, Point p) {
if (cross(a, b, c) < 0)
swap(b, c);
Point3D a3(a), b3(b), c3(c), p3(p);
// printf("%lf %lf %lf\n", a3.x, a3.y, a3.z);
// printf("%lf %lf %lf\n", b3.x, b3.y, b3.z);
// printf("%lf %lf %lf\n", c3.x, c3.y, c3.z);
// printf("%lf %lf %lf\n", p3.x, p3.y, p3.z);
b3 = b3 - a3, c3 = c3 - a3, p3 = p3 - a3;
Point3D f = cross(b3, c3); // normal vector
return cmpZero(p3.dot(f)); // check same direction, in: < 0, on: = 0, out: > 0
}
int intersection(Point a, Point b, Point c, Point d) { // seg(a, b) and seg(c, d)
return cmpZero(cross(a, c, b)) * cmpZero(cross(a, b, d)) > 0
&& cmpZero(cross(c, a, d)) * cmpZero(cross(c, d, b)) > 0;
}
class Delaunay {
public:
list<Edge> head[MAXV]; // graph
Point p[MAXV];
int n, rename[MAXV];
void init(int n, Point p[]) {
for (int i = 0; i < n; i++)
head[i].clear();
for (int i = 0; i < n; i++)
this->p[i] = p[i];
sort(this->p, this->p + n);
for (int i = 0; i < n; i++)
rename[p[i].id] = i;
this->n = n;
divide(0, n - 1);
}
void addEdge(int u, int v) {
head[u].push_front(Edge(v));
head[v].push_front(Edge(u));
head[u].begin()->twin = head[v].begin();
head[v].begin()->twin = head[u].begin();
}
void divide(int l, int r) {
if (r - l <= 1) { // #point <= 2
for (int i = l; i <= r; i++)
for (int j = i+1; j <= r; j++)
addEdge(i, j);
return;
}
int mid = (l + r) /2;
divide(l, mid);
divide(mid + 1, r);
list<Edge>::iterator it;
int nowl = l, nowr = r;
// printf("divide %d %d\n", l, r);
for (int update = 1; update; ) { // find left and right convex, lower common tangent
update = 0;
Point ptL = p[nowl], ptR = p[nowr];
for (it = head[nowl].begin(); it != head[nowl].end(); it++) {
Point t = p[it->id];
double v = cross(ptR, ptL, t);
if (cmpZero(v) > 0 || (cmpZero(v) == 0 && ptR.dist2(t) < ptR.dist2(ptL))) {
nowl = it->id, update = 1;
break;
}
}
if (update) continue;
for (it = head[nowr].begin(); it != head[nowr].end(); it++) {
Point t = p[it->id];
double v = cross(ptL, ptR, t);
if (cmpZero(v) < 0 || (cmpZero(v) == 0 && ptL.dist2(t) < ptL.dist2(ptR))) {
nowr = it->id, update = 1;
break;
}
}
}
addEdge(nowl, nowr); // add tangent
// printf("add base %d %d\n", nowl, nowr);
for (int update = 1; true;) {
update = 0;
Point ptL = p[nowl], ptR = p[nowr];
int ch = -1, side = 0;
for (it = head[nowl].begin(); it != head[nowl].end(); it++) {
// ptL.print(), ptR.print(), p[it->id].print();
if (cmpZero(cross(ptL, ptR, p[it->id])) > 0
&& (ch == -1 || inCircle(ptL, ptR, p[ch], p[it->id]) < 0))
ch = it->id, side = -1;
// printf("test L %d %d %d\n", nowl, it->id, inCircle(ptL, ptR, p[ch], p[it->id]));
}
for (it = head[nowr].begin(); it != head[nowr].end(); it++) {
if (cmpZero(cross(ptR, p[it->id], ptL)) > 0
&& (ch == -1 || inCircle(ptL, ptR, p[ch], p[it->id]) < 0))
ch = it->id, side = 1;
// printf("test R %d %d %d\n", nowr, it->id, inCircle(ptL, ptR, p[ch], p[it->id]));
}
if (ch == -1) break; // upper common tangent
// printf("choose %d %d\n", ch, side);
if (side == -1) {
for (it = head[nowl].begin(); it != head[nowl].end(); ) {
if (intersection(ptL, p[it->id], ptR, p[ch])) {
head[it->id].erase(it->twin);
head[nowl].erase(it++);
} else
it++;
}
nowl = ch;
addEdge(nowl, nowr);
} else {
for (it = head[nowr].begin(); it != head[nowr].end(); ) {
if (intersection(ptR, p[it->id], ptL, p[ch])) {
head[it->id].erase(it->twin);
head[nowr].erase(it++);
} else
it++;
}
nowr = ch;
addEdge(nowl, nowr);
}
}
}
vector< pair<int, int> > getEdge() {
vector< pair<int, int> > ret;
list<Edge>::iterator it;
for (int i = 0; i < n; i++) {
for (it = head[i].begin(); it != head[i].end(); it++) {
if (it->id < i)
continue;
// printf("DG %d %d\n", i, it->id);
ret.push_back(make_pair(p[i].id, p[it->id].id));
}
}
return ret;
}
} tool;
struct edge {
int x, y, v;
edge(int a = 0, int b = 0, int c = 0):
x(a), y(b), v(c) {}
bool operator<(const edge &a) const {
return v < a.v;
}
};
int parent[1024], weight[1024];
void init(int n) {
for(int i= 0; i <= n; i++)
parent[i] = i, weight[i] = 1;
}
int findp(int x) {
return x == parent[x] ? x : (parent[x]=findp(parent[x]));
}
int joint(int x, int y) {
x = findp(x), y = findp(y);
if (x == y) return 0;
if(weight[x] > weight[y])
weight[x] += weight[y], parent[y] = x;
else
weight[y] += weight[x], parent[x] = y;
return 1;
}
int main() {
int n, m, cases = 0;
Point p[MAXV];
while (scanf("%d", &n) == 1) {
init(n);
int x, y;
int e = 0;
for (int i = 0; i < n; i++) {
scanf("%d %d", &x, &y);
p[i] = Point(x, y, i);
}
tool.init(n, p);
vector<edge> E;
vector< pair<int, int> > DG = tool.getEdge();
for (int i = 0; i < DG.size(); i++) {
x = DG[i].first, y = DG[i].second;
int v = (p[x].x - p[y].x) * (p[x].x - p[y].x) +
(p[x].y - p[y].y) * (p[x].y - p[y].y);
E.push_back(edge(x, y, v));
// printf("DG %d %d %d\n", x, y, v);
}
scanf("%d", &m);
for (int i = 0; i < m; i++) {
scanf("%d %d", &x, &y);
x--, y--;
e += joint(x, y);
}
sort(E.begin(), E.end());
double ret = 0;
for (int i = 0; i < E.size(); i++) {
x = E[i].x, y = E[i].y;
if (joint(x, y)) {
ret += sqrt(E[i].v);
e++;
if (e == n - 1)
break;
}
}
printf("%.2lf\n", ret);
}
return 0;
}
/*
2
1 1
2 2
0
1
1 1
0
4
103 104
104 100
104 103
100 100
1
4 2
4
3 4
4 0
4 3
0 0
1
4 2
*/