UVa 11178 - Morley's Theorem

contents

  1. 1. Problem
  2. 2. Input
  3. 3. Output
  4. 4. Sample Input
  5. 5. Output for Sample Input
  6. 6. Solution

Problem

Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero, and the points A, B and C are in counter clockwise order.

Output

For each line of input you should produce one line of output. This line contains six floating point numbers separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are respectively. Errors less than will be accepted.

Sample Input

1
2
3
2
1 1 2 2 1 2
0 0 100 0 50 50

Output for Sample Input

1
2
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975
56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

Solution

題目描述:

給一個三角形,將每一個角三等分後,交三角形內部三個點,求這三個點座標。

題目解法:

向量旋轉、射線交點。

射線交點的部分採用最簡單的克拉瑪方程求解。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <stdio.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define eps 1e-6
struct Pt {
double x, y;
Pt(double a = 0, double b = 0):
x(a), y(b) {}
bool operator<(const Pt &a) const {
if(fabs(x-a.x) > eps)
return x < a.x;
return y < a.y;
}
Pt operator-(const Pt &a) const {
Pt ret;
ret.x = x - a.x;
ret.y = y - a.y;
return ret;
}
};
double dist(Pt a, Pt b) {
return hypot(a.x - b.x, a.y - b.y);
}
double length(Pt a) {
return hypot(a.x, a.y);
}
double dot(Pt a, Pt b) {
return a.x * b.x + a.y * b.y;
}
double cross2(Pt a, Pt b) {
return a.x * b.y - a.y * b.x;
}
double cross(Pt o, Pt a, Pt b) {
return (a.x-o.x)*(b.y-o.y) - (a.y-o.y)*(b.x-o.x);
}
double angle(Pt a, Pt b) {
return acos(dot(a, b) / length(a) / length(b));
}
Pt rotateRadian(Pt a, double radian) {
double x, y;
x = a.x * cos(radian) - a.y * sin(radian);
y = a.x * sin(radian) + a.y * cos(radian);
return Pt(x, y);
}
Pt getIntersection(Pt p, Pt l1, Pt q, Pt l2) {
double a1, a2, b1, b2, c1, c2;
double dx, dy, d;
a1 = l1.y, b1 = -l1.x, c1 = a1 * p.x + b1 * p.y;
a2 = l2.y, b2 = -l2.x, c2 = a2 * q.x + b2 * q.y;
d = a1 * b2 - a2 * b1;
dx = b2 * c1 - b1 * c2;
dy = a1 * c2 - a2 * c1;
return Pt(dx / d, dy / d);
}
Pt solve(Pt A, Pt B, Pt C) {
double radABC = angle(A - B, C - B);
double radACB = angle(A - C, B - C);
Pt vB = rotateRadian(C - B, radABC /3);
Pt vC = rotateRadian(B - C, - radACB /3);
return getIntersection(B, vB, C, vC);
}
int main() {
int testcase;
scanf("%d", &testcase);
while(testcase--) {
Pt A, B, C, D, E, F;
scanf("%lf %lf", &A.x, &A.y);
scanf("%lf %lf", &B.x, &B.y);
scanf("%lf %lf", &C.x, &C.y);
D = solve(A, B, C);
E = solve(B, C, A);
F = solve(C, A, B);
printf("%lf %lf %lf %lf %lf %lf\n", D.x, D.y, E.x, E.y, F.x, F.y);
}
return 0;
}